Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cardiovasc Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107245

RESUMEN

AIMS: Chronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored. METHODS AND RESULTS: We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries. CONCLUSION: Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.

2.
Mol Cell ; 82(1): 190-208.e17, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932975

RESUMEN

Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Sitios Genéticos , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Inactivación del Cromosoma X , Cromosoma X , Animales , Diferenciación Celular , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba
3.
Dev Cell ; 55(5): 629-647.e7, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33080171

RESUMEN

Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.


Asunto(s)
Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Mutación/genética , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteolisis , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203420

RESUMEN

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Asunto(s)
Citoesqueleto/genética , Proteínas Activadoras de GTPasa/genética , Integrinas/genética , Mecanotransducción Celular/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteína de Unión al GTP rac1/genética , Animales , Células COS , Adhesión Celular , Línea Celular , Movimiento Celular , Chlorocebus aethiops , Biología Computacional , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Perros , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Proteínas Activadoras de GTPasa/clasificación , Proteínas Activadoras de GTPasa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Pan troglodytes , Dominios Proteicos , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/clasificación , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rac1/metabolismo
5.
Cell Rep ; 23(6): 1599-1611, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742418

RESUMEN

X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability.


Asunto(s)
Diferenciación Celular/genética , Genes Ligados a X , Discapacidad Intelectual/genética , Mutación/genética , Neuronas/patología , Ubiquitina-Proteína Ligasas/genética , Animales , Biocatálisis , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Silenciador del Gen , Humanos , Masculino , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA