Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Commun ; 15(1): 6328, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068192

RESUMEN

Disruption of alternative splicing frequently causes or contributes to human diseases and disorders. Consequently, there is a need for efficient and sensitive reporter assays capable of screening chemical libraries for compounds with efficacy in modulating important splicing events. Here, we describe a screening workflow employing dual Nano and Firefly luciferase alternative splicing reporters that affords efficient, sensitive, and linear detection of small molecule responses. Applying this system to a screen of ~95,000 small molecules identified compounds that stimulate or repress the splicing of neuronal microexons, a class of alternative exons often disrupted in autism and activated in neuroendocrine cancers. One of these compounds rescues the splicing of several analyzed microexons in the cerebral cortex of an autism mouse model haploinsufficient for Srrm4, a major activator of brain microexons. We thus describe a broadly applicable high-throughput screening system for identifying candidate splicing therapeutics, and a resource of small molecule modulators of microexons with potential for further development in correcting aberrant splicing patterns linked to human disorders and disease.


Asunto(s)
Empalme Alternativo , Exones , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Luciferasas de Luciérnaga , Bibliotecas de Moléculas Pequeñas , Animales , Empalme Alternativo/efectos de los fármacos , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Ratones , Exones/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Células HEK293 , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
2.
Mol Cell ; 83(23): 4222-4238.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065061

RESUMEN

Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Exones/genética , Intrones , ARN
3.
Heliyon ; 9(1): e12744, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36597481

RESUMEN

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

4.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914531

RESUMEN

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Asunto(s)
Poli A , Poliadenilación , Regiones no Traducidas 3' , Humanos , Poli A/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Zinc/metabolismo
5.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35914530

RESUMEN

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Asunto(s)
Neurogénesis , Empalme del ARN , Empalme Alternativo , Animales , Exones/genética , Mamíferos , Ratones , Neurogénesis/genética , Neuronas , Proteínas de Unión al ARN/genética
6.
Nucleic Acids Res ; 50(9): 5313-5334, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544276

RESUMEN

Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.


Asunto(s)
Empalme Alternativo , Linaje de la Célula , Estratos Germinativos , Proteínas de Unión al ARN/metabolismo , Diferenciación Celular , Endodermo , Corazón , Humanos , Mesodermo
7.
Mol Cell ; 82(5): 1035-1052.e9, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182477

RESUMEN

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Intrones/genética , Empalme del ARN , Proteínas de Unión al ARN/genética
8.
iScience ; 25(1): 103562, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34901782

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein is essential for viral replication, making it a promising target for antiviral drug and vaccine development. SARS-CoV-2 infected patients exhibit an uncoordinated immune response; however, the underlying mechanistic details of this imbalance remain obscure. Here, starting from a functional proteomics workflow, we cataloged the protein-protein interactions of SARS-CoV-2 proteins, including an evolutionarily conserved specific interaction of N with the stress granule resident proteins G3BP1 and G3BP2. N localizes to stress granules and sequesters G3BPs away from their typical interaction partners, thus attenuating stress granule formation. We found that N binds directly to host mRNAs in cells, with a preference for 3' UTRs, and modulates target mRNA stability. We show that the N protein rewires the G3BP1 mRNA-binding profile and suppresses the physiological stress response of host cells, which may explain the imbalanced immune response observed in SARS-CoV-2 infected patients.

10.
Nat Commun ; 12(1): 3308, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083519

RESUMEN

The spatial partitioning of the transcriptome in the cell is an important form of gene-expression regulation. Here, we address how intron retention influences the spatio-temporal dynamics of transcripts from two clinically relevant genes: TERT (Telomerase Reverse Transcriptase) pre-mRNA and TUG1 (Taurine-Upregulated Gene 1) lncRNA. Single molecule RNA FISH reveals that nuclear TERT transcripts uniformly and robustly retain specific introns. Our data suggest that the splicing of TERT retained introns occurs during mitosis. In contrast, TUG1 has a bimodal distribution of fully spliced cytoplasmic and intron-retained nuclear transcripts. We further test the functionality of intron-retention events using RNA-targeting thiomorpholino antisense oligonucleotides to block intron excision. We show that intron retention is the driving force for the nuclear compartmentalization of these RNAs. For both RNAs, altering this splicing-driven subcellular distribution has significant effects on cell viability. Together, these findings show that stable retention of specific introns can orchestrate spatial compartmentalization of these RNAs within the cell. This process reveals that modulating RNA localization via targeted intron retention can be utilized for RNA-based therapies.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Telomerasa/genética , Animales , Compartimento Celular , Línea Celular , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Intrones , Ratones , Mitosis , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Estabilidad del ARN , Especificidad de la Especie
11.
Nat Commun ; 12(1): 1405, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658502

RESUMEN

Population scale sweeps of viral pathogens, such as SARS-CoV-2, require high intensity testing for effective management. Here, we describe "Systematic Parallel Analysis of RNA coupled to Sequencing for Covid-19 screening" (C19-SPAR-Seq), a multiplexed, scalable, readily automated platform for SARS-CoV-2 detection that is capable of analyzing tens of thousands of patient samples in a single run. To address strict requirements for control of assay parameters and output demanded by clinical diagnostics, we employ a control-based Precision-Recall and Receiver Operator Characteristics (coPR) analysis to assign run-specific quality control metrics. C19-SPAR-Seq coupled to coPR on a trial cohort of several hundred patients performs with a specificity of 100% and sensitivity of 91% on samples with low viral loads, and a sensitivity of >95% on high viral loads associated with disease onset and peak transmissibility. This study establishes the feasibility of employing C19-SPAR-Seq for the large-scale monitoring of SARS-CoV-2 and other pathogens.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Viral
13.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
14.
Nat Biotechnol ; 38(5): 638-648, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249828

RESUMEN

Systematic mapping of genetic interactions (GIs) and interrogation of the functions of sizable genomic segments in mammalian cells represent important goals of biomedical research. To advance these goals, we present a CRISPR (clustered regularly interspaced short palindromic repeats)-based screening system for combinatorial genetic manipulation that employs coexpression of CRISPR-associated nucleases 9 and 12a (Cas9 and Cas12a) and machine-learning-optimized libraries of hybrid Cas9-Cas12a guide RNAs. This system, named Cas Hybrid for Multiplexed Editing and screening Applications (CHyMErA), outperforms genetic screens using Cas9 or Cas12a editing alone. Application of CHyMErA to the ablation of mammalian paralog gene pairs reveals extensive GIs and uncovers phenotypes normally masked by functional redundancy. Application of CHyMErA in a chemogenetic interaction screen identifies genes that impact cell growth in response to mTOR pathway inhibition. Moreover, by systematically targeting thousands of alternative splicing events, CHyMErA identifies exons underlying human cell line fitness. CHyMErA thus represents an effective screening approach for GI mapping and the functional analysis of sizable genomic regions, such as alternative exons.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Edición Génica/métodos , Redes Reguladoras de Genes , Empalme Alternativo , Animales , Sistemas CRISPR-Cas , Línea Celular , Aptitud Genética , Humanos , Aprendizaje Automático , Masculino , Ratones , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31999954

RESUMEN

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Asunto(s)
Trastorno Autístico/fisiopatología , Disfunción Cognitiva/patología , Factor 4G Eucariótico de Iniciación/fisiología , Exones/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuroblastoma/patología , Neuronas/patología , Animales , Conducta Animal , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogénesis , Neuronas/metabolismo , Biosíntesis de Proteínas , Empalme del ARN , Células Tumorales Cultivadas
16.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30988016

RESUMEN

The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias/patología , Regulación de la Expresión Génica , Células-Madre Neurales/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células-Madre Neurales/patología
17.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388412

RESUMEN

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Asunto(s)
Empalme Alternativo/fisiología , Ingeniería Genética/métodos , Sitios de Empalme de ARN/fisiología , Animales , Trastorno Autístico/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Exones/fisiología , Humanos , Ratones , Proteínas del Tejido Nervioso , Neurogénesis , Neuronas , Precursores del ARN/fisiología , Empalme del ARN/fisiología , Proteínas de Unión al ARN , Ribonucleoproteínas , Factores de Empalme Serina-Arginina , Empalmosomas
18.
Genome Res ; 27(10): 1759-1768, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855263

RESUMEN

Alternative splicing (AS) generates remarkable regulatory and proteomic complexity in metazoans. However, the functions of most AS events are not known, and programs of regulated splicing remain to be identified. To address these challenges, we describe the Vertebrate Alternative Splicing and Transcription Database (VastDB), the largest resource of genome-wide, quantitative profiles of AS events assembled to date. VastDB provides readily accessible quantitative information on the inclusion levels and functional associations of AS events detected in RNA-seq data from diverse vertebrate cell and tissue types, as well as developmental stages. The VastDB profiles reveal extensive new intergenic and intragenic regulatory relationships among different classes of AS and previously unknown and conserved landscapes of tissue-regulated exons. Contrary to recent reports concluding that nearly all human genes express a single major isoform, VastDB provides evidence that at least 48% of multiexonic protein-coding genes express multiple splice variants that are highly regulated in a cell/tissue-specific manner, and that >18% of genes simultaneously express multiple major isoforms across diverse cell and tissue types. Isoforms encoded by the latter set of genes are generally coexpressed in the same cells and are often engaged by translating ribosomes. Moreover, they are encoded by genes that are significantly enriched in functions associated with transcriptional control, implying they may have an important and wide-ranging role in controlling cellular activities. VastDB thus provides an unprecedented resource for investigations of AS function and regulation.


Asunto(s)
Empalme Alternativo , Bases de Datos de Ácidos Nucleicos , Exones , Redes Reguladoras de Genes , Isoformas de Proteínas , Animales , Pollos , Humanos , Ratones , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética
19.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157508

RESUMEN

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Asunto(s)
Empalme Alternativo , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética
20.
Proc Natl Acad Sci U S A ; 113(44): 12360-12367, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791185

RESUMEN

Translational control of gene expression plays a key role during the early phases of embryonic development. Here we describe a transcriptional regulator of mouse embryonic stem cells (mESCs), Yin-yang 2 (YY2), that is controlled by the translation inhibitors, Eukaryotic initiation factor 4E-binding proteins (4E-BPs). YY2 plays a critical role in regulating mESC functions through control of key pluripotency factors, including Octamer-binding protein 4 (Oct4) and Estrogen-related receptor-ß (Esrrb). Importantly, overexpression of YY2 directs the differentiation of mESCs into cardiovascular lineages. We show that the splicing regulator Polypyrimidine tract-binding protein 1 (PTBP1) promotes the retention of an intron in the 5'-UTR of Yy2 mRNA that confers sensitivity to 4E-BP-mediated translational suppression. Thus, we conclude that YY2 is a major regulator of mESC self-renewal and lineage commitment and document a multilayer regulatory mechanism that controls its expression.


Asunto(s)
Empalme Alternativo/fisiología , Diferenciación Celular , Autorrenovación de las Células/fisiología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Animales , Blastocisto/metabolismo , Proteínas Portadoras/metabolismo , Linaje de la Célula , Autorrenovación de las Células/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Intrones , Ratones , Ratones Noqueados , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosfoproteínas , Proteína de Unión al Tracto de Polipirimidina/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Transcripción Genética/fisiología , Factor de Transcripción YY1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA