Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Prim Care Diabetes ; 18(3): 327-332, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38616442

RESUMEN

AIMS: Machine learning models can use image and text data to predict the number of years since diabetes diagnosis; such model can be applied to new patients to predict, approximately, how long the new patient may have lived with diabetes unknowingly. We aimed to develop a model to predict self-reported diabetes duration. METHODS: We used the Brazilian Multilabel Ophthalmological Dataset. Unit of analysis was the fundus image and its meta-data, regardless of the patient. We included people 40 + years and fundus images without diabetic retinopathy. Fundus images and meta-data (sex, age, comorbidities and taking insulin) were passed to the MedCLIP model to extract the embedding representation. The embedding representation was passed to an Extra Tree Classifier to predict: 0-4, 5-9, 10-14 and 15 + years with self-reported diabetes. RESULTS: There were 988 images from 563 people (mean age = 67 years; 64 % were women). Overall, the F1 score was 57 %. The group 15 + years of self-reported diabetes had the highest precision (64 %) and F1 score (63 %), while the highest recall (69 %) was observed in the group 0-4 years. The proportion of correctly classified observations was 55 % for the group 0-4 years, 51 % for 5-9 years, 58 % for 10-14 years, and 64 % for 15 + years with self-reported diabetes. CONCLUSIONS: The machine learning model had acceptable accuracy and F1 score, and correctly classified more than half of the patients according to diabetes duration. Using large foundational models to extract image and text embeddings seems a feasible and efficient approach to predict years living with self-reported diabetes.


Asunto(s)
Diabetes Mellitus , Fondo de Ojo , Aprendizaje Automático , Valor Predictivo de las Pruebas , Autoinforme , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Factores de Tiempo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Brasil/epidemiología , Adulto , Bases de Datos Factuales , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Minería de Datos/métodos , Reproducibilidad de los Resultados , Interpretación de Imagen Asistida por Computador
2.
Sensors (Basel) ; 17(6)2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28590413

RESUMEN

Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA