Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Methods Mol Biol ; 2759: 9-24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285135

RESUMEN

Technological innovation in the design and manufacture of temporary immersion systems (TIS) has increased in the past decade. Innovations have involved the size, fitting, and replacement of components, as well as manufacturing materials. Air replacement by compressor has also been substituted by air replacement by preset tilting/rotation of culture bottles. This design modification aims to increase the biological yield (number of shoots) produced in these bottles and reduce manufacturing costs. However, the operative principle has remained unchanged through time: promote an environment where explant immersions in the culture medium are programmable. The changes in the TIS design involve advantages and disadvantages, generating the efficiency of one type over another. However, validation to identify the most effective type of TIS should be carried out for each plant species. This chapter lists the different types of temporary immersion available on the market, emphasizing the advantages and disadvantages of each when used for plant micropropagation.


Asunto(s)
Comercio , Inmersión , Medios de Cultivo , Rotación
2.
Methods Mol Biol ; 2527: 183-201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951192

RESUMEN

The thin cell layer (TCL) culture system was initially reported in relation to the model plant Nicotiana tabacum, giving rise to 47 years of continuous application and investigation on micropropagation and plant breeding of over 100 plant species or hybrids. The small sizes of the tissue sections (100 µm to 1-2 mm in thickness), its classification into transverse TCL (tTCL) or longitudinal TCL (lTCL) categories, and the interaction between the cultured cells and the culture medium are the main drivers of its efficacy in tens of plants for the induction of somatic embryogenesis, relative to the conventional in-vitro culture system. Furthermore, it promotes higher productivity and reduced time in the proliferation of cultures, which is key for the differentiation of cells and plant tissues. This chapter describes the main characteristics of the TCL sections, and the interaction between cells under in-vitro culture. In addition, it highlights the latest findings reporting the success of TCL in ornamental, herbaceous, woody, and recalcitrant plants. In most cases, studies on the use of TCL in combination with techniques such as bioreactors, histology, genetic transformation, and fidelity analysis, provide indisputable evidence that highlights the importance of this technique in plant biotechnology. Finally, the perspectives on TCL use are described, underlining the advantages and constraints of the technique for its continued use and future application.


Asunto(s)
Desarrollo Embrionario , Fitomejoramiento , Medios de Cultivo , Técnicas de Embriogénesis Somática de Plantas/métodos , Plantas , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA