Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Chem Phys ; 159(6)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37551816

RESUMEN

Boron phosphide (BP) is a (super)hard semiconductor constituted of light elements, which is promising for high demand applications at extreme conditions. The behavior of BP at high temperatures and pressures is of special interest but is also poorly understood because both experimental and conventional ab initio methods are restricted to studying refractory covalent materials. The use of machine learning interatomic potentials is a revolutionary trend that gives a unique opportunity for high-temperature study of materials with ab initio accuracy. We develop a deep machine learning potential (DP) for accurate atomistic simulations of the solid and liquid phases of BP as well as their transformations near the melting line. Our DP provides quantitative agreement with experimental and ab initio molecular dynamics data for structural and dynamic properties. DP-based simulations reveal that at ambient pressure, a tetrahedrally bonded cubic BP crystal melts into an open structure consisting of two interpenetrating sub-networks of boron and phosphorous with different structures. Structure transformations of BP melt under compressing are reflected by the evolution of low-pressure tetrahedral coordination to high-pressure octahedral coordination. The main contributions to structural changes at low pressures are made by the evolution of medium-range order in the B-subnetwork and, at high pressures, by the change of short-range order in the P-subnetwork. Such transformations exhibit an anomalous behavior of structural characteristics in the range of 12-15 GPa. DP-based simulations reveal that the Tm(P) curve develops a maximum at P ≈ 13 GPa, whereas experimental studies provide two separate branches of the melting curve, which demonstrate the opposite behavior. Analysis of the results obtained raises open issues in developing machine learning potentials for covalent materials and stimulates further experimental and theoretical studies of melting behavior in BP.

2.
Rev Sci Instrum ; 93(11): 113905, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461523

RESUMEN

A setup with a working volume of more than 10 mm3 has been fabricated to experimentally study the optical properties of gases, liquids, and solutions in a wide range of temperature (from 200 to 500 K) at hydrostatic pressures up to 1 GPa. The experimental parameters can be maintained with an accuracy of 0.1 K and 1.5 MPa for up to 3-4 h. To introduce laser radiation and to record spectra, high-temperature optical fibers of increased strength in a metal sheath are introduced directly into the working chamber. The primary goal of experiments is to study the Raman radiation at vibron frequencies in supercritical fluids of molecular substances (N2, CO2, CH4, etc.).

3.
J Chem Phys ; 157(12): 124503, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36182419

RESUMEN

Methanol as a basic liquid and the simplest alcohol is widely used in industry and scientific experiments. However, there are still no reliable data on the thermodynamic properties of methanol at high pressure. Here, we present an experimental and computational study of the thermodynamic properties of liquid methanol under high pressure up to 15 kbar, which significantly exceeds previously reported pressures. A temperature response to a small adiabatic change in pressure has been measured using a piston-cylinder apparatus. We have compared our experimental results with the literature data for lower pressures and NIST approximations. We find that all existing experimental data do not agree with each other and with our experiments. The NIST approximations are mainly based on low pressure data and appear to be unreliable in the high pressure region, giving even qualitatively wrong results. OPLS and COMPASS force field models have been used in the method of molecular dynamics. The agreement of molecular simulation with our experimental data is definitely unsatisfactory, which means that the most common computational models of methanol are not sufficiently good. We hope that these experimental data and approximations will help in developing better computational models.

4.
Phys Rev E ; 104(3-1): 034108, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654136

RESUMEN

Our very wide survey of the supercritical phase diagram and its key properties reveals a universal interrelation between dynamics and thermodynamics and an unambiguous transition between liquidlike and gaslike states. This is seen in the master plot showing a collapse of the data representing the dependence of specific heat on key dynamical parameters in the system for many different paths on the phase diagram. As a result, the observed transition is path independent. We call it a "c" transition due to the c-shaped curve parametrizing the dependence of the specific heat on key dynamical parameters. The c transition has a fixed inversion point and provides a new structure to the phase diagram, operating deep in the supercritical state (up to, at least, 2000 times the critical pressure and 50 times the critical temperature). The data collapse and path independence as well as the existence of a special inversion point on the phase diagram are indicative of either of a sharp crossover or a new phase transition in the deeply supercritical state.

5.
Phys Rev Lett ; 126(16): 165501, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33961452

RESUMEN

The recent experiments on fast (microsecond) pulse heating of graphite suggest the existence of sharp maximum (6500 K at 1-2 GPa) on its melting curve. To check the validity of these findings, we propose to investigate the accumulation of extended in-plane defects in graphene. Such defects would contribute to thermodynamic properties of graphene and impose the upper limit on its melting temperature. We propose a type of extended defect of graphene, consisting of pentagonal and heptagonal rings with record low formation energy, whose accumulation leads to the loss of shear rigidity of graphene at temperatures above 6400 K, thus setting the upper limit on its melting temperature. We found that this model satisfactorily explains the increase of specific heat observed in the premelting region of graphite in slow (millisecond) pulse heating experiments. However, in fast (microsecond) pulse heating experiments such an increase of specific heat was not observed, which is a strong indication of overheating that takes place in these experiments.

6.
Sci Adv ; 6(41)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33036979

RESUMEN

Two dimensionless fundamental physical constants, the fine structure constant α and the proton-to-electron mass ratio [Formula: see text], are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant that provides the upper bound for the speed of sound in condensed phases, vu We find that [Formula: see text], where c is the speed of light in vacuum. We support this result by a large set of experimental data and first-principles computations for atomic hydrogen. Our result expands the current understanding of how fundamental constants can impose new bounds on important physical properties.

7.
J Phys Condens Matter ; 32(35): 35LT02, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32353837

RESUMEN

Universal conductance fluctuations are usually observed in the form of aperiodic oscillations in the magnetoresistance of thin wires as a function of the magnetic field B. If such oscillations are completely random at scales exceeding ξ B , their Fourier analysis should reveal a white noise spectrum at frequencies below [Formula: see text]. Comparison with the results for 1D systems suggests another scenario: according to it, such oscillations are due to the superposition of incommensurate harmonics and their spectrum should contain discrete frequencies. An accurate Fourier analysis of the classical experiment by Washburn and Webb reveals a purely discrete spectrum in agreement with the latter scenario. However, this spectrum is close in shape to the discrete white noise spectrum whose properties are similar to a continuous one.

8.
Sci Adv ; 6(17): eaba3747, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32426470

RESUMEN

Viscosity of fluids is strongly system dependent, varies across many orders of magnitude, and depends on molecular interactions and structure in a complex way not amenable to first-principles theories. Despite the variations and theoretical difficulties, we find a new quantity setting the minimal kinematic viscosity of fluids: ν m = 1 4 π ℏ m e m , where me and m are electron and molecule masses. We subsequently introduce a new property, the "elementary" viscosity ι with the lower bound set by fundamental physical constants and notably involving the proton-to-electron mass ratio: ι m = ℏ 4 π ( m p m e ) 1 2 , where mp is the proton mass. We discuss the connection of our result to the bound found by Kovtun, Son, and Starinets in strongly interacting field theories.

9.
J Phys Condens Matter ; 32(38): 385102, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434172

RESUMEN

There have been ample studies of the many phases of H2O in both its solid and low pressure liquid states, and the transitions between them. Using molecular dynamics simulations we address the hitherto unexplored deeply supercritical pressures, where no qualitative transitions are thought to take place and where all properties are expected to vary smoothly. On the basis of these simulations we predict that water at supercritical pressures undergoes a structural crossover across the Frenkel line at pressures as high as 45 times the critical pressure. This provides a new insight into the water phase diagram and establishes a link between the structural and dynamical properties of supercritical water. Specifically, the crossover is demonstrated by a sharp and pronounced at low pressures, and smooth at high pressures, signified by changes in the pair distribution functions and local coordination which coincide with the dynamical transition (the loss of all oscillatory molecular motion) at the Frenkel line on the phase diagram.

10.
J Chem Phys ; 152(15): 154501, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32321261

RESUMEN

Water is the most common liquid on the Earth. At the same time, it is the strangest liquid having numerous anomalous properties. For this reason, although water was investigated in numerous studies, many questions still remain unanswered. Even the thermodynamic properties of water at high pressures are unknown. In this paper, we present an experimental study of the thermodynamic properties of water up to a pressure of 12 kbar and a temperature of 473 K far above the range of pressures and temperatures in previous studies. We compare the experimental results to the results of computer simulations of two models of water (SPC/E and TIP4P) and show that the SPC/E model is not appropriate at high pressure, while the TIP4P model describes the equation of state of water, but fails to describe the heat capacity.

11.
J Phys Condens Matter ; 31(22): 225401, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808013

RESUMEN

A hallmark of a thermodynamic phase transition is the qualitative change of system thermodynamic properties such as energy and heat capacity. On the other hand, no phase transition is thought to operate in the supercritical state of matter and, for this reason, it was believed that supercritical thermodynamic properties vary smoothly and without any qualitative changes. Here, we perform extensive molecular dynamics simulations in a wide temperature range and find that a deeply supercritical state is thermodynamically heterogeneous, as witnessed by different temperature dependence of energy, heat capacity and its derivatives at low and high temperature. The evidence comes from three different methods of analysis, two of which are model-independent. We propose a new definition of the relative width of the thermodynamic crossover and calculate it to be in the fairly narrow relative range of 13%-20%. On the basis of our results, we relate the crossover to the supercritical Frenkel line.

12.
Sci Rep ; 9(1): 755, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679686

RESUMEN

Physical properties of an interacting system are governed by collective excitations, but their nature at extreme supercritical conditions is unknown. Here, we present direct evidence for propagating solid-like longitudinal phonon-like excitations with wavelengths extending to interatomic separations deep in the supercritical state at temperatures up to 3,300 times the critical temperature. We observe that the crossover of dispersion curves develops at k points reducing with temperature. We interpret this effect as the crossover from the collective phonon to the collisional mean-free path regime of particle dynamics and find that the crossover points are close to both the inverse of the shortest available wavelength in the system and to the particle mean free path inferred from experiments and theory. Notably, both the shortest wavelength and mean free path scale with temperature with the same power law, lending further support to our findings.

13.
Phys Chem Chem Phys ; 21(5): 2665-2672, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30657511

RESUMEN

We have measured the elastic moduli of liquid and glassy n-propanol and propylene glycol (PG) under pressure by ultrasonic techniques and have recalculated similar characteristics for glycerol from the previous experiment. All three substances form a ternary homologous family with the common formula C3H8-n(OH)n (n = 1, 2, 3), where the number of hydrogen bonds per molecule increases with the number of oxygen atoms approximately as ≈2n. In turn, the enhancement of hydrogen bonding results in an increase in elastic moduli (bulk modulus for liquids or bulk and shear moduli for glasses) from n-propanol to glycerol at all pressures, while the volume per molecule Vm shows the opposite trend at atmospheric pressure in spite of an increase in the molecular size. Nevertheless, the ratios between the Vm values at pressure P > 0.05 GPa are inverted in liquids and tend to the ratios of molecule volumes which indicates a decrease of the relative contribution of hydrogen bonds to the repulsive intermolecular forces with increasing pressure regardless of increase or decrease in the number of hydrogen bonds and their strength. A similar volume behavior is observed for glasses at T = 77 K. We have also established that the relative difference between corresponding moduli of liquid or glassy n-propanol and PG is remarkably less than that between corresponding values for PG and glycerol. We explain this property by the formation of a three-dimensional network of hydrogen bonds in glycerol, where the number of hydrogen bonds per molecule is close to six.

14.
J Phys Chem B ; 122(38): 9032-9037, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30179499

RESUMEN

1,2-Propanediol (propylene glycol) is a well-known glassformer, which easily vitrifies under wide range of cooling rates. An interesting feature of propylene glycol is that, similar to glycerol, it retains one-mode primary relaxation (slow α process) under a wide range of external P- T conditions. It was demonstrated that the emergence of secondary (ß) relaxation requires the application of very high pressures P > 4.5 GPa. In this pressure range, the observation of secondary relaxation is partially obfuscated by the presence of strong decoupling of the static (ionic) conductivity and primary relaxation (the fractional Debye-Stokes-Einstein effect). However, secondary relaxation can be unambiguously extracted from experimental data by the correlation procedure of the imaginary and real parts of the dielectric response by means of Cole-Cole plots. This is the second (after glycerol) example of observation of Johari-Goldstein relaxation under ultrahigh pressures P > 2 GPa.

15.
Phys Rev Lett ; 120(21): 219602, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883149
17.
J Phys Condens Matter ; 30(13): 134003, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29443011

RESUMEN

We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

18.
J Phys Chem B ; 121(34): 8203-8210, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28766946

RESUMEN

2-Ethyl-1-hexanol monoalcohol is a well-known molecular glassformer, which for a long time attracts attention of researchers. As in all other monohydroxy alcohols, its dielectric relaxation reveals two distinct relaxation processes attributed to the structural relaxation and another more intense process, which gives rise to a low-frequency Debye-like relaxation. In this monoalcohol, the frequency separation between these two processes reaches an extremely high value of 3 orders of magnitude, which makes this substance a rather convenient object for studies of mechanisms (supposedly common to all monoalcohols) leading to vitrification of this type of liquids. In this work, we apply two experimental techniques, dielectric spectroscopy and ultrasonic measurements (in both longitudinal and transverse polarizations) at high pressure, to study interference between different relaxation mechanisms occurring in this liquid, which could shed light on both structural and dielectric relaxation processes observed in a supercooled liquid and a glass state. Application of high pressure in this case leads to the simplification of the frequency spectrum of dielectric relaxation, where only one asymmetric feature is observed. Nonetheless, the maximum attenuation of the longitudinal wave in ultrasonic experiments at high pressure is observed at temperatures ≈50 K above the corresponding temperature for the transverse wave. This might indicate different mechanisms of structural relaxation in shear and bulk elasticities in this liquid.

19.
Phys Rev Lett ; 118(21): 215502, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28598668

RESUMEN

Fundamental understanding of strongly interacting systems necessarily involves collective modes, but their nature and evolution is not generally understood in dynamically disordered and strongly interacting systems such as liquids and supercritical fluids. We report the results of extensive molecular dynamics simulations and provide direct evidence that liquids develop a gap in a solidlike transverse spectrum in the reciprocal space, with no propagating modes between zero and a threshold value. In addition to the liquid state, this result importantly applies to the supercritical state of matter. We show that the emerging gap increases with the inverse of liquid relaxation time and discuss how the gap affects properties of liquid and supercritical states.

20.
J Phys Condens Matter ; 29(34): 345401, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28653958

RESUMEN

Investigation of excitation spectra of liquids is one of the hot test topics nowadays. In particular, recent experimental works showed that liquid metals can demonstrate transverse excitations and positive sound dispersion. However, the theoretical description of these experimental observations is still missing. Here we report a molecular dynamics study of excitation spectra of liquid iron. We compare the results with available experimental data to justify the method. After that we perform calculations for high temperatures to find the location of the Frenkel line introduced in our previous works.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA