RESUMEN
The rapid proliferation of holopelagic Sargassum spp. in the tropical Atlantic Ocean presents environmental challenges and economic opportunities. In 2022, Senegal witnessed its first significant holopelagic Sargassum beaching event, triggering widespread concern and interest from civil society, industrial sectors, and government. This study represents the first analysis of stranded holopelagic Sargassum's morphotypes and chemical composition in Northwest Africa. We highlight the nature of Sargassum stranding, dominated by S. fluitans III, and describe a putative new morphotype. Compared to most of the studies in the tropical Atlantic, Senegalese Sargassum displayed lower arsenic concentrations (9-29 ppm), higher cadmium levels (9-15 ppm), and increased mercury content (0.47-0.57 ppm). In addition, Senegalese Sargassum showed higher levels of iron (237-1017 ppm) and phosphorus (1300-1772 ppm). The biochemical analysis revealed high total protein levels (15-40 % DW) in Senegalese samples, though further analysis is required to confirm this. Furthermore, variations in biochemical composition within various parts of the Sargassum thallus were observed. The low arsenic content makes the beached Senegalese Sargassum attractive for valorisation and sets it apart from holopelagic Sargassum from all other regions where it occurs. However, caution should be taken regarding the high concentrations of cadmium. Our study highlights promising applications in Senegal and neighbouring countries, particularly in animal feed and agriculture. Noteworthy is the notable palladium content (2 ppm), valuable phenolic compounds, and mannitol, which present additional opportunities for the chemical industry. Our interdisciplinary approach enhances the global scientific understanding of the Sargassum issue. With the anticipation of more frequent Sargassum beaching events and, more generally, for seaweed exploitation, we advocate for inter-governmental African organisations to establish standardised norms for their exploitation. We recommend that the Food and Agriculture Organization/World Health Organization consider incorporating more seaweed in the Codex Alimentarius to facilitate their uses particularly when states deal with algal blooms.
RESUMEN
The Canary Current Large Marine Ecosystem (CCLME) is one of the most productive Large Marine Ecosystems worldwide. Assessing the abundance, biomass and distribution of zooplankton in the southern part of this system, off the coast of West Africa, remains challenging due to limited sampling efforts and data availability. However, zooplankton is of primary importance for pelagic ecosystem functioning. We applied an inversion method with combined analysis of acoustic and biological data for copepod discrimination using a bi-frequency (38 and 120 kHz) approach. Large copepods with equivalent spherical radii > 0.5 mm were identified using differences in the mean volume backscattering strength (MVBS). Regarding abundance measured by net sampling, copepods strongly dominated the zooplankton community and the large fraction account for 18%. This estimate correlated significantly with MVBS values that were obtained using an inverse algorithm. We confirmed the utility of using 38 kHz for large copepod detection. An epipelagic biomass of large copepod was estimated at 120-850 mg m-2 in March during upwelling season. It is worth noting that this estimation likely underestimates the true biomass due to inherent uncertainties associated with the measurement method. We recommend future investigations in the interest of using only nighttime data to improve the sampling pattern, particularly on the upper part of the water column (< 10 m) as well as on the shallow part of the continental shelf (< 20 m depth) not covered by fisheries vessel. Nevertheless, such high copepod biomass supports high fish production underlining the key role of copepod in the CCLME. Our results open the way to the analysis of the fluctuation and trend of copepod biomass, along with three decades of fisheries acoustics data available in the region. This helps to determine ecosystem changes, particularly under climate change, and to investigate the role of copepods in the southern CCLME carbon pump at the fine scale.
Asunto(s)
Acústica , Biomasa , Copépodos , Ecosistema , Zooplancton , Animales , Copépodos/fisiología , Copépodos/crecimiento & desarrollo , Zooplancton/fisiología , África Occidental , Estaciones del AñoRESUMEN
Climate change is recognised to lead to spatial shifts in the distribution of small pelagic fish, likely by altering their environmental optima. Fish supply along the Northwest African coast is significant at both socio-economic and cultural levels. Evaluating the impacts of climatic change on small pelagic fish is a challenge and of serious concern in the context of shared stock management. Evaluating the impact of climate change on the distribution of small pelagic fish, a trend analysis was conducted using data from 2363 trawl samplings and 170,000 km of acoustics sea surveys. Strong warming is reported across the Southern Canary Current Large Marine Ecosystem (CCLME), extending from Morocco to Senegal. Over 34 years, several trends emerged, with the southern CCLME experiencing increases in both wind speed and upwelling intensity, particularly where the coastal upwelling was already the strongest. Despite upwelling-induced cooling mechanisms, sea surface temperature (SST) increased in most areas, indicating the complex interplay of climatic-related stressors in shaping the marine ecosystem. Concomitant northward shifts in the distribution of small pelagic species were attributed to long-term warming trends in SST and a decrease in marine productivity in the south. The abundance of Sardinella aurita, the most abundant species along the coast, has increased in the subtropics and fallen in the intertropical region. Spatial shifts in biomass were observed for other exploited small pelagic species, similar to those recorded for surface isotherms. An intensification in upwelling intensity within the northern and central regions of the system is documented without a change in marine primary productivity. In contrast, upwelling intensity is stable in the southern region, while there is a decline in primary productivity. These environmental differences affected several small pelagic species across national boundaries. This adds a new threat to these recently overexploited fish stocks, making sustainable management more difficult. Such changes must motivate common regional policy considerations for food security and sovereignty in all West African countries sharing the same stocks.
Asunto(s)
Cambio Climático , Ecosistema , Peces , Seguridad Alimentaria , Animales , Peces/fisiología , Explotaciones Pesqueras , TemperaturaRESUMEN
Marine pollution in West Africa is major threat particularly around coastal megacities. We assess the chemical and ecotoxicological quality of the marine sediments in various submerged sampling sites of Dakar. Analysis revealed that sediments were slightly basic in which fine and coarse sands predominated. High percentages of total organic carbon were found sometime above 6%. Higher levels of heavy metal were reported than in previous studies. Chromium and nickel were above the Probable Effect Concentration. Low trophic level appeared not affected by the overall toxicity, while medium trophic level was more affected. Indeed, the vast majority (91%) of sites studied revealed a net percentage of Magallana gigas embryolarval developmental abnormality over 20%. The assessment of the global toxicity of marine sediments from the Dakar sites Studied (n = 11) seemed, almost, as a whole, to be in a poor ecotoxicological state calling to take measures to improve the sanitary condition of this marine feature.
Asunto(s)
Ecotoxicología , Monitoreo del Ambiente , Senegal , África OccidentalRESUMEN
Fisheries management is an important strategy for ensuring sustainable use of resources. However, in West Africa, in the absence of quality data for many stocks and effective stock assessment models, the cases where this has been truly successful are notable for their rarity. In West Africa, small pelagic fish are of great socio-economic importance, as well as good indicators of fish stressors. Here, historical data (2004-2019) of five small pelagic species (Sardina pilchardus, Ethmalosa fimbriata, Trachurus trecae, Scomber colias and Mugil cephalus) were collected in Senegalese waters. The B/BMSY results showed stocks to be collapsed (B/BMSY = 0.13 and 0.1 for M. cephalus and S. pilchardus, respectively) and heavily overfished (B/BMSY = 0.24; E. fimbriata). Only S. colias and T. trecae stock were considered to be in good condition (B/BMSY = 1.7 and 1.4 respectively). The Lc/Lc_opt ratio was ≤ 1 for E. fimbriata and M. cephalus, suggesting that the individuals caught for these species were too small. To reverse these bad stock statuses, catching individuals at Lc_opt, 25, 21, 43 and 18 cm for S. colias, E. fimbriata, M. cephalus and S. pilchardus, respectively should be a natural guarantee against recruitment failure and allow individuals to ensure the long-term survival of populations, in a context of data poor fisheries. In conclusion, this study shows that, despite limitations, the LBB model can provides indicators of stock status for species to encourage management measures, especially in data poor countries. It is hoped that these results can help to better assess many stocks currently considered too data poor to be assessed or at least encourage data collection effort on stocks discerned as in bad or critical status.
Asunto(s)
Explotaciones Pesqueras , Perciformes , Animales , Conservación de los Recursos Naturales/métodos , Peces , África OccidentalRESUMEN
Artificial reefs (ARs) are one of the most popular means of supporting marine ecosystem conservation and coastal fisheries, particularly in developing countries. However, ARs generate complex socio-bio-economic interactions that require careful evaluation. This is particularly the case for ARs outside no-take zones, where fish might be subject to enhanced exploitation due to easier catchability. Here, we conducted an interdisciplinary study on how ARs impact fish and fishing yields, combining mathematical and sociological approaches. Both approaches converge to confirm that fishery yields decline when ARs are exploited as if they were open access areas. This situation typically occurs in areas with weak governance and/or high levels of illegal fishing activity, both of which are common in many developing countries. To avoid these adverse effects and their associated ecological consequences, we recommend prioritizing the onset of a long-term surveillance system against illegal fishing activities, and adapting design and location of the ARs based on both and local and academic knowledge, before the deployment of ARs.
RESUMEN
The resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (north and south of Cap Blanc), based on oceanographic regimes. We delineated two size-based groups ("plankton" and "pelagic fish") corresponding to lower and higher trophic levels, respectively. Over the 20-year period, all spatial remote sensing environmental variables increased significantly, except in the area south of Cap Blanc where sea surface Chlorophyll-a concentrations declined and the upwelling favorable wind was stable. Relative index of marine pelagic abundance was higher in the south area compared to the north area of Cap Blanc. No significant latitudinal shift to the mass center was detected, regardless of trophic level. Relative pelagic abundance did not change, suggesting sCCLME pelagic organisms were able to adapt to changing environmental conditions. Despite strong annual variability and the presence of major stressors (overfishing, climate change), the marine pelagic ressources, mainly fish and plankton remained relatively stable over the two decades, advancing our understanding on the resistance of this east border upwelling system.
RESUMEN
We examined growth rates and reproductive characteristics of Sardinella aurita off Senegal and other coastal areas over a 20 year period (1995-2014) to determine how they relate to variations in environmental characteristics of coastal waters. Based on fish length-frequency data and a coastal upwelling index, we found that S. aurita recruitment tends to occur during the periods of most intensive upwelling (March-April off Senegal). Peak reproduction corresponds to periods of low sea-surface temperature (in February or March). The sex ratio was remarkably consistent during the 30 year study period and so was not affected by environmental changes. We hypothesise that S. aurita takes advantage of the higher zooplankton productivity that occurs in coastal waters when upwelling brings nutrient-rich water to the surface (i.e., it increases its growth rate and accumulates energy reserves for spawning). Growth performance appears to be strongly dependent on environmental conditions. The timing of spawning seems to occur when food (zooplankton) is most available for supplying the energy requirements needed by adults for spawning and early development of larvae. Environmental changes seem to have a significant effect on S. aurita growth and reproduction, which endorses their high phenotypic plasticity.
Asunto(s)
Ecosistema , Peces/crecimiento & desarrollo , Maduración Sexual , Adaptación Fisiológica , Animales , Femenino , Masculino , Reproducción , Senegal , Razón de Masculinidad , ZooplanctonRESUMEN
The gross energy content of spawning batches and the microchemistry of sagittal otoliths in individual female bonga shad Ethmalosa fimbriata were compared between contrasting sampling sites at the Senegalese southern coast and inside the hypersaline Sine Saloum Estuary. Results show that females spawning in the estuary's middle reaches invested almost three times more energy into reproduction (115 ± 65 J g-1 body mass) than their neritic counterparts (39 ± 34 J g-1 body mass). Also, female otolith levels of Ba:Ca, Sr:Ca and Zn:Ca either differed significantly between study sites or could be linked to heterogeneous environmental variables. A quadratic discriminant function analysis provided evidence of segregated spawning populations of E. fimbriata in southern Senegalese waters.
Asunto(s)
Estuarios , Peces/fisiología , Reproducción , Animales , Metabolismo Energético , Femenino , Microquímica , Membrana Otolítica/química , SenegalRESUMEN
An idealized system of a shared fish stock associated with different exclusive economic zones (EEZ) is modelled. Parameters were estimated for the case of the small pelagic fisheries shared between Southern Morocco, Mauritania and the Senegambia. Two models of fishing effort distribution were explored. The first one considers independent national fisheries in each EEZ, with a cost per unit of fishing effort that depends on local fishery policy. The second one considers the case of a fully cooperative fishery performed by an international fleet freely moving across the borders. Both models are based on a set of six ordinary differential equations describing the time evolution of the fish biomass and the fishing effort. We take advantage of the two time scales to obtain a reduced model governing the total fish biomass of the system and fishing efforts in each zone. At the fast equilibrium, the fish distribution follows the ideal free distribution according to the carrying capacity in each area. Different equilibria can be reached according to management choices. When fishing fleets are independent and national fishery policies are not harmonized, in the general case, competition leads after a few decades to a scenario where only one fishery remains sustainable. In the case of sub-regional agreement acting on the adjustment of cost per unit of fishing effort in each EEZ, we found that a large number of equilibria exists. In this last case the initial distribution of fishing effort strongly impact the optimal equilibrium that can be reached. Lastly, the country with the highest carrying capacity density may get less landings when collaborating with other countries than if it minimises its fishing costs. The second fully cooperative model shows that a single international fishing fleet moving freely in the fishing areas leads to a sustainable equilibrium. Such findings should foster regional fisheries organizations to get potential new ways for neighbouring fish stock management.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/organización & administración , Modelos Teóricos , Políticas , Animales , Biomasa , Conducta Competitiva , Cooperación InternacionalRESUMEN
This work presents a mathematical model describing the interactions between the cross-shore structure of small pelagic fish population an their exploitation by coastal and offshore fisheries. The complete model is a system of seven ODE's governing three stocks of small pelagic fish population moving and growing between three zones. Two types of fishing fleets are inter-acting with the fish population, industrial boats, constrained to offshore area, and artisanal boats, operating from the shore. Two time scales were considered and we use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model, which is a four dimension one. The analysis of the aggregated model is performed. We discuss the possible equilibriums and their meaning in terms of fishery management. An interesting equilibrium state can be obtained for which we can expect coexistence and a stable equilibrium state between fish stocks and fishing efforts. Some identification parameters are also given in the discussion part of the model.
Asunto(s)
Explotaciones Pesqueras , Peces/fisiología , Modelos Teóricos , Animales , Conservación de los Recursos Naturales , Biología MarinaRESUMEN
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
Asunto(s)
Adaptación Fisiológica , Cambio Climático , Conservación de los Recursos Naturales , Peces/crecimiento & desarrollo , Reproducción/fisiología , Animales , Explotaciones Pesqueras , Dinámica Poblacional , Senegal , Razón de MasculinidadRESUMEN
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.