Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Chem Lab Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38872409

RESUMEN

OBJECTIVES: Minimal residual disease (MRD) status in multiple myeloma (MM) is an important prognostic biomarker. Personalized blood-based targeted mass spectrometry detecting M-proteins (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to MRD-assessment in bone marrow. However, MS-MRD still comprises of manual steps that hamper upscaling of MS-MRD testing. Here, we introduce a proof-of-concept for a novel workflow using data independent acquisition-parallel accumulation and serial fragmentation (dia-PASEF) and automated data processing. METHODS: Using automated data processing of dia-PASEF measurements, we developed a workflow that identified unique targets from MM patient sera and personalized protein sequence databases. We generated patient-specific libraries linked to dia-PASEF methods and subsequently quantitated and reported M-protein concentrations in MM patient follow-up samples. Assay performance of parallel reaction monitoring (prm)-PASEF and dia-PASEF workflows were compared and we tested mixing patient intake sera for multiplexed target selection. RESULTS: No significant differences were observed in lowest detectable concentration, linearity, and slope coefficient when comparing prm-PASEF and dia-PASEF measurements of serial dilutions of patient sera. To improve assay development times, we tested multiplexing patient intake sera for target selection which resulted in the selection of identical clonotypic peptides for both simplex and multiplex dia-PASEF. Furthermore, assay development times improved up to 25× when measuring multiplexed samples for peptide selection compared to simplex. CONCLUSIONS: Dia-PASEF technology combined with automated data processing and multiplexed target selection facilitated the development of a faster MS-MRD workflow which benefits upscaling and is an important step towards the clinical implementation of MS-MRD.

2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175577

RESUMEN

Real-time database searching allows for simpler and automated proteomics workflows as it eliminates technical bottlenecks in high-throughput experiments. Most importantly, it enables results-dependent acquisition (RDA), where search results can be used to guide data acquisition during acquisition. This is especially beneficial for glycoproteomics since the wide range of physicochemical properties of glycopeptides lead to a wide range of optimal acquisition parameters. We established here the GlycoPaSER prototype by extending the Parallel Search Engine in Real-time (PaSER) functionality for real-time glycopeptide identification from fragmentation spectra. Glycopeptide fragmentation spectra were decomposed into peptide and glycan moiety spectra using common N-glycan fragments. Each moiety was subsequently identified by a specialized algorithm running in real-time. GlycoPaSER can keep up with the rate of data acquisition for real-time analysis with similar performance to other glycoproteomics software and produces results that are in line with the literature reference data. The GlycoPaSER prototype presented here provides the first proof-of-concept for real-time glycopeptide identification that unlocks the future development of RDA technology to transcend data acquisition.


Asunto(s)
Glicopéptidos , Motor de Búsqueda , Secuencia de Aminoácidos , Glicopéptidos/química , Glicosilación , Programas Informáticos , Polisacáridos/química
3.
Anal Chem ; 93(41): 13791-13799, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34606255

RESUMEN

Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteómica , Humanos , Espectrometría de Masas , Péptidos , Proteínas
4.
J Proteome Res ; 20(4): 2122-2129, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33724840

RESUMEN

The Bruker timsTOF Pro is an instrument that couples trapped ion mobility spectrometry (TIMS) to high-resolution time-of-flight (TOF) mass spectrometry (MS). For proteomics, lipidomics, and metabolomics applications, the instrument is typically interfaced with a liquid chromatography (LC) system. The resulting LC-TIMS-MS data sets are, in general, several gigabytes in size and are stored in the proprietary Bruker Tims data format (TDF). The raw data can be accessed using proprietary binaries in C, C++, and Python on Windows and Linux operating systems. Here we introduce a suite of computer programs for data accession, including OpenTIMS, TimsR, and TimsPy. OpenTIMS is a C++ library capable of reading Bruker TDF files. It opens up Bruker's proprietary codebase. TimsPy and TimsR build on top of OpenTIMS, enabling swift and user-friendly data access to the raw data with Python and R. Both programs are available under a GPL3 license on all major platforms, extending the possibility to interact with timsTOF data to macOS. Additionally, OpenTIMS is capable of translating Bruker data into HDF5 files that can be easily analyzed from Python with the vaex module. OpenTIMS and TimsPy therefore provide easy and quick access to Bruker timsTOF raw data.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteómica , Cromatografía Liquida , Espectrometría de Masas , Programas Informáticos
5.
Anal Chem ; 93(3): 1383-1392, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33331761

RESUMEN

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations.


Asunto(s)
Péptidos/análisis , Proteómica , Isótopos de Carbono , Células HeLa , Humanos , Espectrometría de Movilidad Iónica , Isótopos de Nitrógeno , Péptidos/síntesis química , Factores de Tiempo
6.
Mol Cell Proteomics ; 19(6): 1058-1069, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32156793

RESUMEN

Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the potential to boost proteome coverage, quantification accuracy and dynamic range. Required for this is suitable software that extracts the information contained in the four-dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes the added data dimension. It offers an end to end computational workflow for the identification and quantification of peptides and proteins in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly parallelizable 4D feature detection algorithm extracts peaks which are assembled to isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion mobility and signal intensity dependent model, based on peptides from the sample. A new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) values of MS1 features in the matching process significantly gains specificity from the extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the ion mobility values between the runs. The missing value problem in protein quantification over many samples is greatly reduced by CCS aware MBR.MS1 level label-free quantification is also implemented which proves to be highly precise and accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-MS/MS is part of the basic MaxQuant release and can be downloaded from http://maxquant.org.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Movilidad Iónica/métodos , Péptidos/análisis , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Algoritmos , Escherichia coli/metabolismo , Células HeLa , Humanos , Péptidos/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA