Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235083

RESUMEN

We present a detailed study of the field-dependent specific heat of the bimetallic ferromagnetically coupled chain compound MnNi(NO2)4(en)2, en = ethylenediamine. For this material, which in zero field orders antiferromagnetically below TN=2.45 K, small fields suppress magnetic order. Instead, in such fields, a double-peak-like structure in the temperature dependence of the specific heat is observed. We attribute this behavior to the existence of an acoustic and an optical mode in the spin-wave dispersion as a result of the existence of two different spins per unit cell. We compare our experimental data to numerical results for the specific heat obtained by exact diagonalization and Quantum Monte Carlo simulations for the alternating spin-chain model, using parameters that have been derived from the high-temperature behavior of the magnetic susceptibility. The interchain coupling is included in the numerical treatment at the mean-field level. We observe remarkable agreement between experiment and theory, including the ordering transition, using previously determined parameters. Furthermore, the observed strong effect of an applied magnetic field on the ordered state of MnNi(NO2)4(en)2 promises interesting magnetocaloric properties.

2.
Phys Rev Lett ; 120(11): 117204, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601734

RESUMEN

The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics: beyond a magnetic field of B_{c}≈7.5 T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpected, large energy gap arises, which increases linearly with the magnetic field, reaching remarkable ℏω_{0}/k_{B}≈50 K at 18 T.

3.
Phys Rev Lett ; 116(1): 017202, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26799041

RESUMEN

We investigate the heat conductivity κ of the Heisenberg spin-1/2 ladder at finite temperature covering the entire range of interchain coupling J(⊥), by using several numerical methods and perturbation theory within the framework of linear response. We unveil that a perturbative prediction κ∝J(⊥)(-2), based on simple golden-rule arguments and valid in the strict limit J(⊥)→0, applies to a remarkably wide range of J(⊥), qualitatively and quantitatively. In the large J(⊥) limit, we show power-law scaling of opposite nature, namely, κ∝J(⊥)(2). Moreover, we demonstrate the weak and strong coupling regimes to be connected by a broad minimum, slightly below the isotropic point at J(⊥)=J(∥). Reducing temperature T, starting from T=∞, this minimum scales as κ∝T(-2) down to T on the order of the exchange coupling constant. These results provide for a comprehensive picture of κ(J(⊥),T) of spin ladders.

4.
Phys Rev Lett ; 112(12): 120601, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24724642

RESUMEN

We demonstrate that the concept of quantum typicality allows for significant progress in the study of real-time spin dynamics and transport in quantum magnets. To this end, we present a numerical analysis of the spin-current autocorrelation function of the antiferromagnetic and anisotropic spin-1/2 Heisenberg chain as inferred from propagating only a single pure state, randomly chosen as a "typical" representative of the statistical ensemble. Comparing with existing time-dependent density-matrix renormalization group data, we show that typicality is fulfilled extremely well, consistent with an error of our approach, which is perfectly under control and vanishes in the thermodynamic limit. In the long-time limit, our results provide for a new benchmark for the enigmatic spin Drude weight, which we obtain from chains as long as L=33 sites, i.e., from Hilbert spaces of dimensions almost O(104) larger than in existing exact-diagonalization studies.

5.
Phys Rev Lett ; 110(15): 157203, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167304

RESUMEN

We demonstrate that pointlike defects in noncollinear magnets give rise to a highly dispersive structure in the magnon scattering, violating a standard paradigm of its momentum independence. For a single impurity spin coupled to a prototypical noncollinear antiferromagnet, we find that the resolvent is dominated by a distinct dispersive structure with its momentum dependence set by the magnon dispersion and shifted by the ordering vector. This feature is a consequence of umklapp scattering off the impurity-induced spin texture, which arises due to the noncollinear ground state of the host system. Detailed results for the staggered and uniform magnetization of this texture as well as the T matrix from numerical linear spin-wave theory are presented.

6.
Phys Rev Lett ; 106(16): 160602, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21599345

RESUMEN

We address the coherence of the dynamics of spin-currents with components transverse to an external magnetic field for the spin-1/2 Heisenberg chain. We study current autocorrelations at finite temperatures and the real-time dynamics of currents at zero temperature. Besides a coherent Larmor oscillation, we find an additional collective oscillation at higher frequencies, emerging as a coherent many-magnon effect at low temperatures. Using numerical and analytical methods, we analyze the oscillation frequency and decay time of this coherent current-mode versus temperature and magnetic field.

7.
Phys Rev Lett ; 107(25): 250602, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22243061

RESUMEN

We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cutoff momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cutoff momentum for diffusion decreases. Above the cutoff momentum diffusion breaks down completely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA