Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Trends Pharmacol Sci ; 41(8): 506-508, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482456

RESUMEN

Genetic defects in telomere maintenance result in stem cell exhaustion and a spectrum of telomere biology diseases. Systemic treatments beyond organ transplantation are lacking for these diseases. Nagpal and colleagues identified small molecules that restore telomere maintenance in patient-derived stem cells, offering a promising therapy for telomere biology diseases.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Humanos , ARN , Células Madre/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo
2.
Hepatology ; 72(4): 1412-1429, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32516515

RESUMEN

BACKGROUND AND AIMS: Telomere attrition is a major risk factor for end-stage liver disease. Due to a lack of adequate models and intrinsic difficulties in studying telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver disease in patients with telomere syndromes remain elusive. To circumvent that, we used genome editing to generate isogenic human embryonic stem cells (hESCs) harboring clinically relevant mutations in telomerase and subjected them to an in vitro, stage-specific hepatocyte differentiation protocol that resembles hepatocyte development in vivo. APPROACH AND RESULTS: Using this platform, we observed that while telomerase is highly expressed in hESCs, it is quickly silenced, specifically due to telomerase reverse transcriptase component (TERT) down-regulation, immediately after endoderm differentiation and completely absent in in vitro-derived hepatocytes, similar to what is observed in human primary hepatocytes. While endoderm derivation is not impacted by telomere shortening, progressive telomere dysfunction impaired hepatic endoderm formation. Consequently, hepatocyte derivation, as measured by expression of specific hepatic markers as well by albumin expression and secretion, is severely compromised in telomerase mutant cells with short telomeres. Interestingly, this phenotype was not caused by cell death induction or senescence. Rather, telomere shortening prevents the up-regulation and activation of human hepatocyte nuclear factor 4 alpha (HNF4α) in a p53-dependent manner. Both reactivation of telomerase and silencing of p53 rescued hepatocyte formation in telomerase mutants. Likewise, the conditional expression (doxycycline-controlled) of HNF4α, even in cells that retained short telomeres, accrued DNA damage, and exhibited p53 stabilization, successfully restored hepatocyte formation from hESCS. CONCLUSIONS: Our data show that telomere dysfunction acts as a major regulator of HNF4α during hepatocyte development, pointing to a target in the treatment of liver disease in telomere-syndrome patients.


Asunto(s)
Factor Nuclear 4 del Hepatocito/fisiología , Hepatocitos/fisiología , Telómero/fisiología , Proteína p53 Supresora de Tumor/fisiología , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias , Hepatocitos/citología , Humanos , Telomerasa/genética
3.
Blood ; 133(12): 1308-1312, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30728146

RESUMEN

Reduced levels of TERC, the telomerase RNA component, cause dyskeratosis congenita (DC) in patients harboring mutations in TERC, PARN, NOP10, NHP2, NAF1, or DKC1. Inhibition of the noncanonical poly(A) polymerase PAPD5, or the exosome RNA degradation complex, partially restores TERC levels in immortalized DKC1 mutant cells, but it remains unknown if modulation of posttranscriptional processing of TERC could improve hematopoietic output in DC. We used human embryonic stem cells (hESCs) with a common dyskerin mutation (DKC1_A353V), which have defective telomere maintenance and reduced definitive hematopoietic potential, to understand the effects of reducing EXOSC3 activity, or silencing PAPD5-mediated oligoadenylation, on hematopoietic progenitor specification and function in DC. Reduction of EXOSC3 or PAPD5 levels in DKC1 mutant hESCs led to functional improvements in TERC levels and telomerase activity, with concomitant telomere elongation and reduced levels of DNA damage signaling. Interestingly, the silencing of PAPD5, but not EXOSC3, significantly restored definitive hematopoietic potential in DKC1 mutant cells. Mechanistically, we show that PAPD5 inhibition is sustained in differentiated CD34+ cells, with a concomitant increase in mature, functional, forms of TERC, indicating that regulation of PAPD5 is a potential strategy to reverse hematologic dysfunction in DC patients.


Asunto(s)
Disqueratosis Congénita/prevención & control , Células Madre Embrionarias/citología , Hematopoyesis , Mutación , ARN Nucleotidiltransferasas/antagonistas & inhibidores , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Telomerasa/metabolismo , Proteínas de Ciclo Celular/genética , Disqueratosis Congénita/metabolismo , Disqueratosis Congénita/patología , Células Madre Embrionarias/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Proteínas Nucleares/genética , ARN/genética , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Telomerasa/genética , Telómero
4.
Stem Cell Reports ; 9(2): 409-418, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28757166

RESUMEN

Dyskeratosis congenita (DC) is a bone marrow failure syndrome associated with telomere dysfunction. The progression and molecular determinants of hematopoietic failure in DC remain poorly understood. Here, we use the directed differentiation of human embryonic stem cells harboring clinically relevant mutations in telomerase to understand the consequences of DC-associated mutations on the primitive and definitive hematopoietic programs. Interestingly, telomere shortening does not broadly impair hematopoiesis, as primitive hematopoiesis is not impaired in DC cells. In contrast, while phenotypic definitive hemogenic endothelium is specified, the endothelial-to-hematopoietic transition is impaired in cells with shortened telomeres. This failure is caused by DNA damage accrual and is mediated by p53 stabilization. These observations indicate that detrimental effects of telomere shortening in the hematopoietic system are specific to the definitive hematopoietic lineages. This work illustrates how telomere dysfunction impairs hematopoietic development and creates a robust platform for therapeutic discovery for treatment of DC patients.


Asunto(s)
Disqueratosis Congénita/sangre , Disqueratosis Congénita/genética , Hematopoyesis/genética , Proteína p53 Supresora de Tumor/genética , Anemia Aplásica/sangre , Anemia Aplásica/etiología , Anemia Aplásica/patología , Biomarcadores , Médula Ósea/patología , Enfermedades de la Médula Ósea/sangre , Enfermedades de la Médula Ósea/etiología , Enfermedades de la Médula Ósea/patología , Trastornos de Fallo de la Médula Ósea , Diferenciación Celular/genética , Daño del ADN , Análisis Mutacional de ADN , Disqueratosis Congénita/patología , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes , Marcación de Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemoglobinuria Paroxística/sangre , Hemoglobinuria Paroxística/etiología , Hemoglobinuria Paroxística/patología , Histonas/metabolismo , Humanos , Inmunofenotipificación , Modelos Biológicos , Mutación , Fenotipo , Telómero , Homeostasis del Telómero/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA