Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 23(1): 54, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164830

RESUMEN

BACKGROUND: Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. RESULTS: Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. CONCLUSIONS: Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases.


Asunto(s)
Metilación de ADN , ARN Ribosómico , Animales , ADN Ribosómico/genética , Epigénesis Genética , Variación Genética , Humanos , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
2.
PLoS Genet ; 16(10): e1009035, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33048947

RESUMEN

Epidemiological research suggests that paternal obesity may increase the risk of fathering small for gestational age offspring. Studies in non-human mammals indicate that such associations could be mediated by DNA methylation changes in spermatozoa that influence offspring development in utero. Human obesity is associated with differential DNA methylation in peripheral blood. It is unclear, however, whether this differential DNA methylation is reflected in spermatozoa. We profiled genome-wide DNA methylation using the Illumina MethylationEPIC array in a cross-sectional study of matched human blood and sperm from lean (discovery n = 47; replication n = 21) and obese (n = 22) males to analyse tissue covariation of DNA methylation, and identify obesity-associated methylomic signatures. We found that DNA methylation signatures of human blood and spermatozoa are highly discordant, and methylation levels are correlated at only a minority of CpG sites (~1%). At the majority of these sites, DNA methylation appears to be influenced by genetic variation. Obesity-associated DNA methylation in blood was not generally reflected in spermatozoa, and obesity was not associated with altered covariation patterns or accelerated epigenetic ageing in the two tissues. However, one cross-tissue obesity-specific hypermethylated site (cg19357369; chr4:2429884; P = 8.95 × 10-8; 2% DNA methylation difference) was identified, warranting replication and further investigation. When compared to a wide range of human somatic tissue samples (n = 5,917), spermatozoa displayed differential DNA methylation across pathways enriched in transcriptional regulation. Overall, human sperm displays a unique DNA methylation profile that is highly discordant to, and practically uncorrelated with, that of matched peripheral blood. We observed that obesity was only nominally associated with differential DNA methylation in sperm, and therefore suggest that spermatozoal DNA methylation is an unlikely mediator of intergenerational effects of metabolic traits.


Asunto(s)
Metilación de ADN/genética , Epigenoma/genética , Obesidad/genética , Espermatozoides/metabolismo , Adolescente , Adulto , Índice de Masa Corporal , Niño , Preescolar , Islas de CpG/genética , Replicación del ADN/genética , Epigénesis Genética/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/epidemiología , Obesidad/patología , Polimorfismo de Nucleótido Simple/genética , Espermatozoides/crecimiento & desarrollo , Espermatozoides/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA