Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Virol ; : e0036824, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940586

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.

2.
Elife ; 122024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814682

RESUMEN

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.


The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.


Asunto(s)
Proteolisis , ARN de Transferencia , SARS-CoV-2 , ARNt Metiltransferasas , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502865

RESUMEN

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.

4.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
5.
Front Cell Infect Microbiol ; 12: 958176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034716

RESUMEN

Ras-GTPase-activating SH3 domain-binding-proteins 1 (G3BP1) and 2 (G3BP2) are multifunctional RNA-binding proteins involved in stress granule nucleation, previously identified as essential cofactors of Old World alphaviruses. They are recruited to viral replication complexes formed by the Chikungunya virus (CHIKV), Semliki Forest virus (SFV), and Sindbis virus (SINV) via an interaction with a duplicated FGxF motif conserved in the hypervariable domain (HVD) of virus-encoded nsP3. According to mutagenesis studies, this FGxF duplication is strictly required for G3BP binding and optimal viral growth. Contrasting with this scenario, nsP3 encoded by Mayaro virus (MAYV), an arthritogenic virus grouped with Old World alphaviruses, contains a single canonical FGxF sequence. In light of this unusual feature, we questioned MAYV nsP3/G3BPs relationships. We report that G3BP1 and G3BP2 are both required for MAYV growth in human cells and bind nsP3 protein. In infected cells, they are recruited to nsP3-containing cytosolic foci and active replication complexes. Unexpectedly, deletion of the single FGxF sequence in MAYV nsP3 did not abolish these phenotypes. Using mutagenesis and in silico modeling, we identify an upstream FGAP amino acid sequence as an additional MAYV nsP3/G3BP interaction motif required for optimal viral infectivity. These results, therefore, highlight a non-conventional G3BP binding sequence in MAYV nsP3.


Asunto(s)
Virus Chikungunya , Proteínas no Estructurales Virales , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Replicación Viral
6.
Annu Rev Virol ; 8(1): 327-347, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34255544

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Antivirales , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Humanos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología
7.
J Neuroinflammation ; 17(1): 233, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778106

RESUMEN

Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.


Asunto(s)
Infecciones por Arbovirus/complicaciones , Trastornos del Conocimiento/virología , Cognición/fisiología , Humanos
8.
J Transl Med ; 18(1): 310, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778120

RESUMEN

BACKGROUND: HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). METHODS: The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. RESULTS: In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. CONCLUSIONS: This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.


Asunto(s)
VIH-1 , Animales , Linfocitos B/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Reparación del ADN , Humanos , Ratones , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
9.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132240

RESUMEN

In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.


Asunto(s)
Virus Chikungunya/metabolismo , Colesterol/metabolismo , Cisteína/metabolismo , Lipoilación/fisiología , Microdominios de Membrana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Chlorocebus aethiops , Endosomas/metabolismo , Células HEK293 , Células HeLa , Humanos , Virus Sindbis , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
10.
Antiviral Res ; 172: 104642, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31678479

RESUMEN

Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne RNA virus that causes epidemics of debilitating disease in tropical and sub-tropical regions with autochtonous transmission in regions with temperate climate. Currently, there is no licensed vaccine or specific antiviral drug available against CHIKV infection. In this study, we examine the role, in the CHIKV viral cycle, of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1), two key lipogenic enzymes required for fatty acid production and early desaturation. We show that both enzymes and their upstream regulator PI3K are required for optimal CHIKV infection. We demonstrate that pharmacologic manipulation of FASN or SCD1 enzymatic activity by non-toxic concentrations of cerulenin or CAY10566 decreases CHIKV genome replication. Interestingly, a similar inhibitory effect was also obtained with Orlistat, an FDA-approved anti-obesity drug that targets FASN activity. These drugs were also effective against Mayaro virus (MAYV), an under-studied arthritogenic Old world Alphavirus endemic in South American countries with potential risk of emergence, urbanization and dispersion to other regions. Altogether, our results identify FASN and SCD1 as conserved druggable cofactors of Alphavirus genome replication and support the broad-spectrum activity of drugs targeting the host fatty acids metabolism.


Asunto(s)
Alphavirus/efectos de los fármacos , Ácido Graso Sintasas/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Replicación Viral/efectos de los fármacos , Alphavirus/genética , Infecciones por Alphavirus/tratamiento farmacológico , Animales , Antivirales/farmacología , Línea Celular , Cerulenina/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/genética , Chlorocebus aethiops , Ácido Graso Sintasas/efectos de los fármacos , Genoma Viral , Células HEK293 , Humanos , Orlistat/farmacología , Estearoil-CoA Desaturasa/efectos de los fármacos , Células Vero
11.
Virologie (Montrouge) ; 23(3): 160-175, 2019 06 01.
Artículo en Francés | MEDLINE | ID: mdl-31210133

RESUMEN

The replication of viral pathogens relies on their ability to manipulate their host. Several steps of the infectious cycle require the hijacking of cellular membranes. Positive stranded RNA viruses replicating in the cytoplasm of their host reorganize cellular membranes. This leads to the formation of organelles, which host viral replication. The formation of such compartments, which are genuine viral factories, induces morphological modifications of the host cell, which vary depending on the pathogen. However, the molecular mechanisms underlying such a remodeling remain unclear. These mechanisms are subject to intense research since their formation is indispensable to viral multiplication and therefore represent an attractive therapeutic target. In this review, we provide a bird's eye view on the current knowledge of the architecture and virus-host interactions involved in the biogenesis of positive stranded RNA virus replication organelles.


Asunto(s)
Orgánulos , Virus ARN Monocatenarios Positivos , Interacciones Microbiota-Huesped , ARN , Replicación Viral/genética
12.
Antiviral Res ; 164: 162-175, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30825471

RESUMEN

Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Succinatos/química , Succinatos/farmacología , Triterpenos/química , Triterpenos/farmacología , VIH-1/fisiología , Humanos , Células Jurkat , Simulación del Acoplamiento Molecular , Mutación , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
13.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463980

RESUMEN

Beyond their role in cellular RNA metabolism, DExD/H-box RNA helicases are hijacked by various RNA viruses in order to assist replication of the viral genome. Here, we identify the DExH-box RNA helicase 9 (DHX9) as a binding partner of chikungunya virus (CHIKV) nsP3 mainly interacting with the C-terminal hypervariable domain. We show that during early CHIKV infection, DHX9 is recruited to the plasma membrane, where it associates with replication complexes. At a later stage of infection, DHX9 is, however, degraded through a proteasome-dependent mechanism. Using silencing experiments, we demonstrate that while DHX9 negatively controls viral RNA synthesis, it is also required for optimal mature nonstructural protein translation. Altogether, this study identifies DHX9 as a novel cofactor for CHIKV replication in human cells that differently regulates the various steps of CHIKV life cycle and may therefore mediate a switch in RNA usage from translation to replication during the earliest steps of CHIKV replication.IMPORTANCE The reemergence of chikungunya virus (CHIKV), an alphavirus that is transmitted to humans by Aedes mosquitoes, is a serious global health threat. In the absence of effective antiviral drugs, CHIKV infection has a significant impact on human health, with chronic arthritis being one of the most serious complications. The molecular understanding of host-virus interactions is a prerequisite to the development of targeted therapeutics capable to interrupt viral replication and transmission. Here, we identify the host cell DHX9 DExH-Box helicase as an essential cofactor for early CHIKV genome translation. We demonstrate that CHIKV nsP3 protein acts as a key factor for DHX9 recruitment to replication complexes. Finally, we establish that DHX9 behaves as a switch that regulates the progression of the viral cycle from translation to genome replication. This study might therefore have a significant impact on the development of antiviral strategies.


Asunto(s)
Virus Chikungunya/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Chlorocebus aethiops , ARN Helicasas DEAD-box/genética , ADN Helicasas/metabolismo , Genómica , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Biosíntesis de Proteínas/genética , ARN Helicasas/metabolismo , ARN Viral/metabolismo , Células Vero , Replicación Viral/genética , Replicación Viral/fisiología
14.
Parasit Vectors ; 10(1): 556, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29121985

RESUMEN

BACKGROUND: Dengue virus remains a major threat in Vietnam, while chikungunya virus is expected to become one. Surveillance was conducted from 2012 to 2014 in Vietnam to assess the presence of dengue and chikungunya viruses in patients hospitalized with acute fever in five Vietnam provinces neighboring Lao PDR and Cambodia. Surveillance was extended to mosquitoes present in the vicinity of the patients' households. RESULTS: A total 558 human serum samples were collected along with 1104 adult mosquitoes and 12,041 larvae from 2250 households. Dengue virus was found in 17 (3%) human serum samples and in 9 (0.8%) adult mosquitoes. Chikungunya virus was detected in 2 adult mosquitoes (0.18%) while no chikungunya virus was detected in humans. Differing densities of mosquito populations were found, with the highest in the Long An Province border with Cambodia. Long An Province also displayed the lowest rate of infection, despite a very high Breteau Index, high human population density and presence of the main cross border road system. The highest incidence was found in Dac Nong Province, where the Breteau and Container indices were the second lowest. Dengue virus was detected in five Aedes albopictus, three Aedes aegypti and one Culex vishnui. Chikungunya virus was detected in two Ae. aegypti. All infected mosquitoes belonged to haplotypes described in other parts of the world and a number of novel haplotypes were found among uninfected mosquitoes. CONCLUSIONS: Dengue is considered to be regularly introduced to Vietnam from Cambodia, mostly through human movement. The data reported here provides a complementary picture. Due to intensive international trade, long-distance transportation of mosquito populations may play a role in the regular importation of dengue in Vietnam through Ho Chi Minh City. It is important to decipher the movement of mosquitoes in Vietnam, not only at the Lao PDR and Cambodia borders but also through international trade routes. Mosquito surveillance programs should address and follow mosquito populations instead of mosquito species.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/aislamiento & purificación , Virus del Dengue/aislamiento & purificación , Dengue/epidemiología , Mosquitos Vectores/virología , Adolescente , Adulto , Aedes/virología , Anciano , Animales , Cambodia/epidemiología , Fiebre Chikungunya/virología , Niño , Preescolar , Culex/virología , Dengue/transmisión , Dengue/virología , Monitoreo Epidemiológico , Femenino , Hospitalización , Humanos , Incidencia , Lactante , Larva/virología , Masculino , Persona de Mediana Edad , Mosquitos Vectores/fisiología , Vietnam/epidemiología , Adulto Joven
15.
J Biol Chem ; 292(45): 18672-18681, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28928217

RESUMEN

Autophagy-related proteins such as Beclin-1 are involved in an array of complex processes, including antiviral responses, and may also modulate the efficiency of gene therapy viral vectors. The Tat-Beclin-1 (TB1) peptide has been reported as an autophagy-inducing factor inhibiting the replication of pathogens such as HIV, type 1 (HIV-1). However, autophagy-related proteins are also essential for the early steps of HIV-1 infection. Therefore, we examined the effects of the Beclin-1 evolutionarily conserved domain in TB1 on viral transduction and autophagy in single-round HIV infection or with nonreplicative HIV-1-derived lentiviral vectors. TB1 enhanced transduction with various pseudotypes but without inducing the autophagy process. TB1 augmented the transduction of human CD34+ hematopoietic stem/progenitor cells while maintaining their capacity to engraft in vivo into humanized mice. TB1 was as effective as other transduction additives and functioned by enhancing the adhesion and fusion of viral particles with target cells but not their aggregation. We also found that the N-terminal L1 loop was critical for TB1 transduction-enhancing activity. Interestingly, the Tat-Beclin-2 (TB2) peptide, derived from the human Beclin-2 protein, was even more potent than TB1 in promoting viral transduction and infection. Taken together, our findings suggest that the TB1 and TB2 peptides enhance the viral entry step. Tat-Beclin peptides therefore represent a new family of viral transduction enhancers for potential use in gene therapy.


Asunto(s)
Autofagia , Beclina-1/metabolismo , VIH-1/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lentivirus/fisiología , Internalización del Virus , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Animales , Beclina-1/química , Beclina-1/genética , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Secuencia Conservada , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Transgénicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Organismos Libres de Patógenos Específicos , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Sci Rep ; 7(1): 3145, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600536

RESUMEN

Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.


Asunto(s)
Virus Chikungunya/efectos de los fármacos , Colesterol/metabolismo , Imipramina/farmacología , Piel/virología , Androstenos/farmacología , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/virología , Humanos , Enfermedad de Niemann-Pick Tipo C/patología , Piel/citología , Piel/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
17.
EBioMedicine ; 12: 161-169, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27688094

RESUMEN

The recent Zika virus (ZIKV) epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian) ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.


Asunto(s)
Tropismo Viral , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Astrocitos/virología , Supervivencia Celular , Humanos , Células-Madre Neurales/virología , Filogenia , Células Vero , Virus Zika/clasificación
18.
Med Sci (Paris) ; 32(4): 378-86, 2016 Apr.
Artículo en Francés | MEDLINE | ID: mdl-27137695

RESUMEN

Zika virus, discovered in 1947, is particularly publicized because of its involvement in a major epidemic that began in 2015 and which epicenter is located in Latin America, mainly in Brazil. In the majority of cases (70-80 %) the infection is asymptomatic, however in some patients, moderate fever, skin rash, conjunctivitis and myalgia may occur. More alarming, neurological complications are reported, in particular cases of microcephaly probably resulting from the infection of women in the first or second trimester of pregnancy. Moreover, Guillain-Barré syndromes have also been identified in patients whose infection was confirmed. The extent of the current outbreak reveals the very primitive state of knowledge about the pathophysiology of this virus. Thus, a global effort is being undertaken in order to quickly characterize the molecular interaction of the virus with human cells, but also to develop specific diagnostic assays and vaccinal approaches.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades , Infección por el Virus Zika/epidemiología , Virus Zika/fisiología , Brasil/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Epidemias , Femenino , Humanos , América Latina/epidemiología , Masculino , Embarazo , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/virología
19.
Asian Pac J Trop Med ; 9(1): 39-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26851784

RESUMEN

OBJECTIVE: To establish a surveillance in Dong Thap, at the border with Cambodia by assessing the presence of DENV serotypes and CHIKV among patients hospitalized at Dong Thap general hospital. METHODS: Cross-sectional descriptive analysis was conducted on a cohort of 131 patients hospitalized with acute fever and symptoms compatible with dengue or chikungunya. The study was conducted from January 2012 to February 2013. The full clinical picture was established as well as serological and molecular detection. Serological analysis was sequentially performed on blood samples collected on admission and an average of seven days after admission. The detection of IgM antibody to DENV was performed by IgM capture ELISA and the detection of DENV and CHIKV RNA was done by reverse-transcription multiplex PCR. RESULTS: 101 patients out of 131 (77%) were confirmed with dengue. All four dengue serotypes were detected with a predominance of DENV2 and DENV4. No chikungunya infection was detected although reported in neighboring Cambodia. A differential efficiency of serological dengue detection was observed. Efficiency was 29% upon admission and 53% after seven days on the same patients. 30 patients out of 131 (23%) were negative with both DENV and CHIKV. CONCLUSIONS: Dengue is at risk of being underestimated and chikungunya is not systematically detected. Changes in detection and surveillance procedures are therefore discussed to increase efficiency of dengue detection and continue the monitoring the emergence of CHIKV in Dong Thap province and in Vietnam.

20.
Asian Pac J Trop Med ; 8(7): 543-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26276285

RESUMEN

OBJECTIVE: To record the human cases of dengue fever (DF) and investigate the Aedes mosquito species circulating during the Hanoi 2011 DF epidemics. METHODS: 24 different outbreak points were recorded in 8 districts between August and December 2011. RESULTS: 140 patients were hospitalized following dengue diagnostic with a predominance of males (59.3%) and the 15-34 age class. Only DENV-1 (11.27%) and DENV-2 (88.73%) serotypes were detected in human samples. Mosquito sampling performed in and around patients households revealed the predominance of Aedes aegypti (A. aegypti) (95.15%) versus Aedes albopictus (4.85%). CONCLUSIONS: There is a positive correlation between the population density of A. aegypti and the number of human cases and duration of outbreaks. This was not observed for Aedes albopictus. Three pools of A. aegypti were positive with dengue virus, two with DENV-1 and one with DENV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA