Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Microbiol ; 21(10): e13074, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31231933

RESUMEN

Cholera toxin (Ctx) is an AB-type protein toxin that acts as an adenosine diphosphate (ADP)-ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER-associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N-terminal RPPDEI sequence (residues 11-16) and an LDIAPA sequence in the C-terminal region (residues 153-158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full-length CtxA1. Both sequences were necessary for the ER-to-cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI-like motif at the N- or C-termini of the A chains from four other ER-translocating toxins that act as ADP-ribosyltransferases: pertussis toxin, Escherichia coli heat-labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP-ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER-to-cytosol export of CtxA1 and possibly other toxin A chains as well.


Asunto(s)
Toxina del Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Secuencias de Aminoácidos/genética , Animales , Toxinas Bacterianas/genética , Células CHO , Toxina del Cólera/química , Toxina del Cólera/genética , Toxina del Cólera/aislamiento & purificación , Cricetulus , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Exotoxinas/genética , Expresión Génica , Mutagénesis , Toxina del Pertussis/genética , Unión Proteica , Transporte de Proteínas/genética , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosa
2.
PLoS One ; 11(11): e0166477, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829022

RESUMEN

Cholera toxin (CT) is an AB-type protein toxin that contains a catalytic A1 subunit, an A2 linker, and a cell-binding B homopentamer. The CT holotoxin is released into the extracellular environment, but CTA1 attacks a target within the cytosol of a host cell. We recently reported that grape extract confers substantial resistance to CT. Here, we used a cell culture system to identify twelve individual phenolic compounds from grape extract that inhibit CT. Additional studies determined the mechanism of inhibition for a subset of the compounds: two inhibited CT binding to the cell surface and even stripped CT from the plasma membrane of a target cell; two inhibited the enzymatic activity of CTA1; and four blocked cytosolic toxin activity without directly affecting the enzymatic function of CTA1. Individual polyphenolic compounds from grape extract could also generate cellular resistance to diphtheria toxin, exotoxin A, and ricin. We have thus identified individual toxin inhibitors from grape extract and some of their mechanisms of inhibition against CT.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Toxina del Cólera/antagonistas & inhibidores , Fenoles/farmacología , Proantocianidinas/farmacología , ADP Ribosa Transferasas/antagonistas & inhibidores , Animales , Toxinas Bacterianas/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Células CHO , Catequina/farmacología , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Cricetulus , Toxina Diftérica/antagonistas & inhibidores , Exotoxinas/antagonistas & inhibidores , Frutas/química , Extracto de Semillas de Uva/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Ricina/antagonistas & inhibidores , Células Vero , Factores de Virulencia/antagonistas & inhibidores , Vitis/química , Exotoxina A de Pseudomonas aeruginosa
3.
Nature ; 469(7328): 64-7, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21150901

RESUMEN

The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O ≥ 1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T > 2,500 K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA