Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178157

RESUMEN

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/antagonistas & inhibidores , Tanquirasas/genética , Tanquirasas/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Procesamiento Proteico-Postraduccional , Reparación del ADN , ADP-Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli ADP Ribosilación/genética
2.
Autophagy ; 19(6): 1711-1732, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36469690

RESUMEN

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Asunto(s)
Enfermedad de Parkinson , Proteínas Quinasas , Humanos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia , Ubiquitina/metabolismo
3.
Cells ; 11(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35954270

RESUMEN

Loss of either PINK1 or PRKN causes an early onset Parkinson's disease (PD) phenotype. Functionally, PINK1 and PRKN work together to mediate stress-activated mitochondrial quality control. Upon mitochondrial damage, PINK1, a ubiquitin kinase and PRKN, a ubiquitin ligase, decorate damaged organelles with phosphorylated ubiquitin for sequestration and degradation in lysosomes, a process known as mitophagy. While several genetic mutations are established to result in loss of mitophagy function, many others have not been extensively characterized and are of unknown significance. Here, we analyzed a set of twenty variants, ten in each gene, focusing on understudied variants mostly from the Parkinson's progressive marker initiative, with sensitive assays to define potential functional deficits. Our results nominate specific rare genetic PINK1 and PRKN variants that cause loss of enzymatic function in line with a potential causative role for PD. Additionally, we identify several variants with intermediate phenotypes and follow up on two of them by gene editing midbrain-derived neuronal precursor cells. Thereof derived isogenic neurons show a stability defect of the rare PINK1 D525N mutation, while the common PINK1 Q115L substitution results in reduced kinase activity. Our strategy to analyze variants with sensitive functional readouts will help aid diagnostics and disease treatment in line with current genomic and therapeutic advances.


Asunto(s)
Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Front Neurol ; 11: 594927, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519679

RESUMEN

Introduction: Nigeria is one of the most populated countries in the world; however, there is a scarcity of studies in patients with age-related neurodegenerative diseases, such as Parkinson disease (PD). The aim of this study was to screen patients with PD including a small cohort of early-onset PD (EOPD) cases from Nigeria for PRKN, PINK1, DJ1, SNCA multiplication, and LRRK2 p.G2019S. Methods: We assembled a cohort of 109 Nigerian patients with PD from the four main Nigerian tribes: Yoruba, Igbo, Edo, and Hausa. Fifteen cases [14 from the Yoruba tribe (93.3%)] had EOPD (defined as age-at-onset <50 years). All patients with EOPD were sequenced for the coding regions of PRKN, PINK1, and DJ1. Exon dosage analysis was performed with a multiplex ligation-dependent probe amplification assay, which also included a SNCA probe and LRRK2 p.G2019S. We screened for LRRK2 p.G2019S in the entire PD cohort using a genotyping assay. The PINK1 p.R501Q functional analysis was conducted. Results: In 15 patients with EOPD, 22 variants were observed [PRKN, 9 (40.9%); PINK1, 10 (45.5%); and DJ1, 3 (13.6%)]. Three (13.6%) rare, nonsynonymous variants were identified, but no homozygous or compound heterozygous carriers were found. No exonic rearrangements were present in the three genes, and no carriers of SNCA genomic multiplications or LRRK2 p.G2019S were identified. The PINK1 p.R501Q functional analysis revealed pathogenic loss of function. Conclusion: More studies on age-related neurodegenerative diseases are needed in sub-Saharan African countries, including Nigeria. Population-specific variation may provide insight into the genes involved in PD in the local population but may also contribute to larger studiesperformed in White and Asian populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA