Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Soc Mass Spectrom ; 34(10): 2146-2155, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37590165

RESUMEN

Crosslinking mass spectrometry (XL-MS) supports structure analysis of individual proteins and highly complex whole-cell interactomes. The identification of crosslinked peptides from enzymatic digests remains challenging, especially at the cell level. Empirical methods that use gas-phase cleavable crosslinkers can simplify the identification process by enabling an MS3-based strategy that turns crosslink identification into a simpler problem of detecting two separable peptides. However, the method is limited to select instrument platforms and is challenged by duty cycle constraints. Here, we revisit a pseudo-MS3 concept that incorporates in-source fragmentation, where a fast switch between gentle high-transmission source conditions and harsher in-source fragmentation settings liberates peptides for standard MS2-based peptide identification. We present an all-in-one method where retention time matches between the crosslink precursor and the liberated peptides establish linkage, and MS2 sequencing identifies the source-liberated peptides. We demonstrate that DC4, a very labile cleavable crosslinker, generates high-intensity peptides in-source. Crosslinks can be identified from these liberated peptides, as they are chromatographically well-resolved from monolinks. Using bovine serum albumin (BSA) as a crosslinking test case, we detect 27% more crosslinks with pseudo-MS3 over a best-in-class MS3 method. While performance is slightly lower for whole-cell lysates (generating two-thirds of the identifications of a standard method), we find that 60% of these hits are unique, highlighting the complementarity of the method.


Asunto(s)
Péptidos , Albúmina Sérica Bovina , Péptidos/química , Espectrometría de Masas , Albúmina Sérica Bovina/química , Estructura Secundaria de Proteína , Reactivos de Enlaces Cruzados/química
2.
Anal Chem ; 95(15): 6425-6432, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37022750

RESUMEN

Crosslinking mass spectrometry (XL-MS) is a valuable technique for generating point-to-point distance measurements in protein space. However, cell-based XL-MS experiments require efficient software that can detect crosslinked peptides with sensitivity and controlled error rates. Many algorithms implement a filtering strategy designed to reduce the size of the database prior to mounting a search for crosslinks, but concern has been expressed over the possibility of reduced sensitivity using these strategies. We present a new scoring method that uses a rapid presearch method and a concept inspired by computer vision algorithms to resolve crosslinks from other conflicting reaction products. Searches of several curated crosslink datasets demonstrate high crosslink detection rates, and even the most complex proteome-level searches (using cleavable or noncleavable crosslinkers) can be completed efficiently on a conventional desktop computer. The detection of protein-protein interactions is increased twofold through the inclusion of compositional terms in the scoring equation. The combined functionality is made available as CRIMP 2.0 in the Mass Spec Studio.


Asunto(s)
Péptidos , Proteoma , Péptidos/química , Espectrometría de Masas/métodos , Programas Informáticos , Algoritmos , Reactivos de Enlaces Cruzados/química
3.
Nucleic Acids Res ; 50(3): 1620-1638, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35104878

RESUMEN

The life of RNA polymerase II (RNAPII) transcripts is shaped by the dynamic formation of mutually exclusive ribonucleoprotein complexes (RNPs) that direct transcript biogenesis and turnover. A key regulator of RNA metabolism in the nucleus is the scaffold protein ARS2 (arsenic resistance protein 2), bound to the cap binding complex (CBC). We report here that alternative splicing of ARS2's intron 5, generates cytoplasmic isoforms that lack 270 amino acids from the N-terminal of the protein and are functionally distinct from nuclear ARS2. Switching of ARS2 isoforms within the CBC in the cytoplasm has dramatic functional consequences, changing ARS2 from a NMD inhibitor to a NMD promoter that enhances the binding of UPF1 to NCBP1 and ERF1, favouring SURF complex formation, SMG7 recruitment and transcript degradation. ARS2 isoform exchange is also relevant during arsenic stress, where cytoplasmic ARS2 promotes a global response to arsenic in a CBC-independent manner. We propose that ARS2 isoform switching promotes the proper recruitment of RNP complexes during NMD and the cellular response to arsenic stress. The existence of non-redundant ARS2 isoforms is relevant for cell homeostasis, and stress response.


Asunto(s)
Arsénico , Degradación de ARNm Mediada por Codón sin Sentido , Arsénico/metabolismo , Núcleo Celular/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Helicasas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
4.
J Proteomics ; 211: 103544, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31683063

RESUMEN

For disordered proteins, ligand binding can be a critical event that changes their structural dynamics. The ability to characterize such changes would facilitate the development of drugs designed to stabilize disordered proteins, whose mis-folding is important for a number of pathologies, including neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. In this study, we used hydrogen/deuterium exchange, differential crosslinking, differential surface modification, and molecular dynamics (MD) simulations to characterize the structural changes in disordered proteins that result from ligand binding. We show here that both an ATP-independent protein chaperone, Spy L32P, and the FK506 binding domain of a prolyl isomerase, FKBP-25 F145A/I223P, are disordered, yet exhibit structures that are distinct from chemically denatured unfolded states in solution, and that they undergo transitions to a more structured state upon ligand binding. These systems may serve as models for the characterization of ligand-induced disorder-to-order transitions in proteins using structural proteomics approaches. SIGNIFICANCE: In this study, we used hydrogen/deuterium exchange, differential crosslinking, differential surface modification, and molecular-dynamics simulations to characterize the structural changes in disordered proteins that result from ligand binding. The protein-ligand systems studied here (the ATP-independent protein chaperone, Spy L32P, and the FK506 binding domain of a prolyl isomerase, FKBP-25 F145A/I223P) may serve as models for understanding ligand-induced disorder-to-order transitions in proteins. Additionally, the structural proteomic techniques demonstrated here are shown to be effective tools for the characterization of disorder-to-order transitions and can be used to facilitate study of other systems in which this class of structural transition can be used for modulating major pathological features of disease, such as the abnormal protein aggregation that occurs with Parkinson's disease and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Simulación de Dinámica Molecular , Humanos , Ligandos , Chaperonas Moleculares , Conformación Proteica , Proteómica
5.
PLoS Comput Biol ; 15(3): e1006859, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30917118

RESUMEN

Combining structural proteomics experimental data with computational methods is a powerful tool for protein structure prediction. Here, we apply a recently-developed approach for de novo protein structure determination based on the incorporation of short-distance crosslinking data as constraints in discrete molecular dynamics simulations (CL-DMD) for the determination of conformational ensemble of the intrinsically disordered protein α-synuclein in the solution. The predicted structures were in agreement with hydrogen-deuterium exchange, circular dichroism, surface modification, and long-distance crosslinking data. We found that α-synuclein is present in solution as an ensemble of rather compact globular conformations with distinct topology and inter-residue contacts, which is well-represented by movements of the large loops and formation of few transient secondary structure elements. Non-amyloid component and C-terminal regions were consistently found to contain ß-structure elements and hairpins.


Asunto(s)
Simulación de Dinámica Molecular , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura , Humanos , Conformación Proteica , Proteómica , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestructura
6.
Anal Chem ; 90(5): 3079-3082, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29336549

RESUMEN

Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.

7.
Sci Adv ; 3(7): e1700479, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28695211

RESUMEN

We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein-models for α helix-rich and ß sheet-rich proteins, respectively-and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Pliegue de Proteína , Proteómica/métodos , Reproducibilidad de los Resultados , Relación Estructura-Actividad
8.
J Proteomics ; 149: 69-76, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-26931439

RESUMEN

Short-distance molecular-modeling constraints are advantageous for elucidating the structures of individual proteins and protein conformational changes. Commonly used amine-reactive crosslinks are relatively long (14Å), partly due to the length of the lysine side-chain, and are sparsely distributed throughout a protein. Short-distance non-specific crosslinkers can provide a larger number of tighter molecular-modeling constraints. Here we describe the use of a short-range homo-trifunctional isotopically-coded non-specific photo-reactive crosslinking reagent, 2,4,6-triazido-1,3,5-triazine (TATA)-12C3/13C3, for MS-based protein crosslinking studies. Upon activation by 254nm UV light, TATA-12C3/13C3 generates up to three nitrene radicals capable of non-selective crosslinking at ~5Å. This reagent was validated using cyclohexane, several test peptides, and myoglobin, and was found to react with a large number of amino acids, forming multiple crosslinked products. The myoglobin crosslinks detected by MS agreed with the known structure of myoglobin; arranging the protein's secondary-structure motifs into their correct fold was possible based solely on the constraints imposed by the crosslinks. Finally, TATA was used to crosslink the α-synuclein monomer. The 10 short-distance constraints provided by TATA crosslinking led to an initial model of the molten-globule form of the native α-synuclein monomer; this provides a suggested structure for the precursor of the misfolded α-synuclein proteoforms involved in synucleopathies. BIOLOGICAL SIGNIFICANCE: The isotopically labeled short-range non-specific crosslinker TATA-12C3/13C3 was characterized for use in crosslinking-based protein structural studies. The crosslinking products of TATA can provide a distance constraint of merely 5Ǻ between crosslinked residues. TATA-12C3/13C3 had broad reactivity, crosslinking a wide variety of amino acids, including lysine, glutamic and aspartic acid, asparagine, glutamine, glycine, alanine, valine, proline, methionine, serine, cysteine, tyrosine, and the N-terminus. The short-distance crosslinking constraints provided by TATA allowed us to predict the fold of myoglobin using a combination of these distance constraints with a prediction of myoglobin's secondary structure motifs. TATA was also used to crosslink α-synuclein in its native, molten globule form, which has not been characterized using other structural biology techniques. The distance constraints provided by the crosslinks allowed for the manual modeling of a rudimentary structure for the α-synuclein monomer.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Marcaje Isotópico/métodos , Mioglobina/química , Triazinas/química , alfa-Sinucleína/química , Cromatografía Liquida , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/efectos de la radiación , Humanos , Modelos Moleculares , Péptidos/química , Procesos Fotoquímicos , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triazinas/síntesis química , Triazinas/efectos de la radiación , Rayos Ultravioleta
9.
J Proteomics ; 118: 12-20, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25192908

RESUMEN

The resolution and the fidelity of a protein structural model, constructed using crosslinking data, is dependent on the crosslinking distance constraints. Most of the popular amine-reactive NHS-ester crosslinkers are limited in their capacity to provide short distance constraints because of the rarity of lysine residues occurring in close proximity in the protein structure. To solve this problem, hetero-bifunctional crosslinkers containing both a photo-reactive functional group and an NHS-ester group can be used to enable non-specific crosslinking within the proximity of these lysine residues. Here we develop three such isotopically-coded hetero-bifunctional photo-reactive crosslinkers, bearing azido, diazirine or benzophenone photo-reactive groups (azido-benzoic-acid-succinimide (ABAS)-(12)C6/(13)C6, succinimidyl-diazirine (SDA)-(12)C5/(13)C5, and carboxy-benzophenone-succinimide (CBS)-(12)C6/(13)C6, respectively). These crosslinkers were validated using several model proteins/peptides and were then applied to study the structure of the native α-synuclein protein. In that case the ABAS crosslinker proved to be the most suitable, with 10 crosslinks being found in the native α-synuclein structure. BIOLOGICAL SIGNIFICANCE: Structural proteomics can be used for studying protein structures which may be difficult to examine by traditional structural biology methods such as NMR or X-ray crystallography. Crosslinking in particular is used to provide distance constraints for molecular modeling of individual proteins and protein complexes. The shortest distance constraints are most valuable for the modeling process. To be able to provide such short distance constraints, non-specific photo-reactive chemistry can be used for crosslinking reactions. However, detection of such non-specific crosslinks is difficult because the signal from any particular crosslink is low due to the broad reactivity of the crosslinking reagents. To overcome this problem, we have employed isotopic labeling of these crosslinkers. In this paper, we have demonstrated their effectiveness for studying the native α-synuclein protein structure. The non-specific reactivity, in combination with isotopic coding of these crosslinkers, allowed for the formation and detection of short-range crosslinks, targeting a variety of amino acids. These reagents may prove useful for future applications to a variety of protein structural problems. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Marcaje Isotópico/métodos , alfa-Sinucleína/química , Isótopos de Carbono/química , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
10.
J Proteomics ; 109: 104-10, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24972318

RESUMEN

Crosslinking mass spectrometric applications for the study of proteins and protein complexes benefit from using (15)N metabolically labeled proteins. Peptides, derived from crosslinked (14)N and (15)N proteins (used in a 1:1molar ratio), exhibit specific mass spectrometric signatures of doublets of peaks, reflecting the number of nitrogen atoms in the peptides. This can be used as an additional search criterion for assignment of the crosslinks. Here, we describe the further development of our ICC-CLASS software suite which is designed for automatic analysis of mass spectrometric crosslinking data, by the addition of the (14)N(15)N DXMSMS Match program. The program is designed to assist in distinguishing inter- from intra-molecular crosslinks at the interface of homodimers in protein aggregation studies. The program takes into account the number of nitrogen atoms present in (14)N(15)N-labeled crosslinked peptides and uses it as an additional parameter for the identification of crosslinks based on both the MS and MS/MS spectra. This greatly increases the confidence of the assignments, and this approach can be successfully used in other types of complicated crosslinking experiments, such as those with non-specific crosslinking sites, non-specific digestion, zero-length crosslinking, or crosslinking with unknown reaction mechanisms, by facilitating the use of (15)N metabolically labeled proteins. BIOLOGICAL SIGNIFICANCE: The new (14)N(15)N DXMSMS Match software program is a practical tool for the efficient assignment of crosslinks from LC-MS/MS experiments using an equimolar mixture of non-labeled and (15)N metabolically labeled proteins. It greatly facilitates automated data analysis from complicated crosslinking experiments, such as those using zero-length crosslinkers and those involving only a few crosslinking and digestion site restrictions.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Programas Informáticos , Cromatografía Liquida , Marcaje Isotópico/métodos , Isótopos de Nitrógeno/química , Proteínas/análisis , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA