Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Plant Biol ; 74: 697-725, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36608349

RESUMEN

Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.


Asunto(s)
Ecosistema , Ecotipo , Fenotipo , Evolución Biológica
2.
Plant Cell Environ ; 46(3): 736-746, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564901

RESUMEN

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf ) to total soil-to-leaf hydraulic resistance (Rtotal ), or fRleaf (=Rleaf /Rtotal ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46-0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29-0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.


Asunto(s)
Suelo , Árboles , Árboles/fisiología , Agua/fisiología , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología
3.
Plant Cell Environ ; 45(4): 1216-1228, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119114

RESUMEN

The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.


Asunto(s)
Sequías , Eucalyptus , Hojas de la Planta , Agua , Microtomografía por Rayos X , Xilema
4.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469040

RESUMEN

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Asunto(s)
Árboles , Agua , Carbono , Sequías , Bosques , Hojas de la Planta , Bosque Lluvioso
5.
New Phytol ; 232(1): 148-161, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171131

RESUMEN

Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.


Asunto(s)
Árboles , Clima Tropical , Bosques , Hábitos , Hojas de la Planta
6.
New Phytol ; 231(4): 1415-1430, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33959976

RESUMEN

Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.


Asunto(s)
Anemia , Helechos , Deshidratación , Desecación , Fotosíntesis , Hojas de la Planta , Agua
7.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33780533

RESUMEN

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Pared Celular/metabolismo , Células del Mesófilo , Filogenia , Hojas de la Planta
8.
Tree Physiol ; 41(9): 1627-1640, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-33611521

RESUMEN

Plants from arid environments display covarying traits to survive or resist drought. Plant drought resistance and ability to survive long periods of low soil water availability should involve leaf phenology coordination with leaf and stem functional traits related to water status. This study tested correlations between phenology and functional traits involved in plant water status regulation in 10 Sonoran Desert tree species with contrasting phenology. Species seasonal variation in plant water status was defined by calculating their relative positions along the iso/anisohydric regulation continuum based on their hydroscape areas (HA)-a metric derived from the relationship between predawn and midday water potentials-and stomatal and hydraulic traits. Additionally, functional traits associated with plant water status regulation, including lamina vessel hydraulic diameter (DHL), stem-specific density (SSD) and leaf mass per area (LMA) were quantified per species. To characterize leaf phenology, leaf longevity (LL) and canopy foliage duration (FD) were determined. Hydroscape area was strongly correlated with FD but not with leaf longevity (LL); HA was significantly associated with SSD and leaf hydraulic traits (DHL, LMA) but not with stem hydraulic traits (vulnerability index, relative conductivity); and FD was strongly correlated with LMA and SSD. Leaf physiological characteristics affected leaf phenology when it was described as canopy FD better than when described as LL. Stem and leaf structure and hydraulic functions were not only relevant for categorizing species along the iso/anisohydric continuum but also allowed identifying different strategies of desert trees within the 'fast-slow' plant economics spectrum. The results in this study pinpoint the set of evolutionary pressures that shape the Sonoran Desert Scrub physiognomy.


Asunto(s)
Árboles , Agua , Sequías , Longevidad , Hojas de la Planta
9.
New Phytol ; 228(3): 884-897, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542732

RESUMEN

Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.


Asunto(s)
Agua , Xilema , Sequías , Filogenia , Madera , Microtomografía por Rayos X
10.
Plant Cell Environ ; 43(1): 103-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472076

RESUMEN

Drought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F2 mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F3 progeny. Progenies were grown in a glasshouse in a randomized complete block design. A subset of seedlings was subjected to a drought treatment after which they were rewatered and scored for damage and growth postdrought. Nondroughted seedlings were assessed for growth traits as well as lignotuber size and resprouting following severe damage to the main stem. QTL were detected for most traits. Importantly, independent QTL were detected for (a) drought damage and plant size, (b) drought damage and growth recovery, and (c) lignotuber size and resprouting capacity. Such independence argues that trade-offs are unlikely to be a major limitation to the response to selection and at the early life history stage studied; there are opportunities to improve resilience to drought without adverse effects on productivity.


Asunto(s)
Sequías , Eucalyptus/fisiología , Regulación de la Expresión Génica , Hojas de la Planta/fisiología , Plantones/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas , Fenotipo , Polinización , Sitios de Carácter Cuantitativo , Árboles/fisiología
11.
Tree Physiol ; 39(10): 1736-1749, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553461

RESUMEN

The vulnerability of forest species and tree populations to climate change is related to the exposure of the ecosystem to extreme climatic conditions and to the adaptive capacity of the population to cope with those conditions. Adaptive capacity is a relatively under-researched topic within the forest science community, and there is an urgent need to understand to what extent particular combinations of traits have been shaped by natural selection under climatic gradients, potentially resulting in adaptive multi-trait associations. Thus, our aim was to quantify genetic variation in several leaf and woody traits that may contribute to multi-trait associations in which intra-specific variation could represent a source for species adaptation to climate change. A multi-trait approach was performed using nine Quercus petraea provenances originating from different locations that cover most of the species' distribution range over Europe and that were grown in a common garden. Multiple adaptive differences were observed between oak provenances but also some evolutionary stasis. In addition, our results revealed higher genetic differentiation in traits related to phenology and growth than in those related to xylem anatomy, physiology and hydraulics, for which no genetic differentiation was observed. The multiple associations between those traits and climate variables resulting from multivariate and path analyses suggest a multi-trait association largely involving phenological and growth traits for Q. petraea.


Asunto(s)
Quercus , Cambio Climático , Ecosistema , Europa (Continente) , Fenotipo
12.
New Phytol ; 219(1): 206-215, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655174

RESUMEN

Recent studies have revealed that some responses of fern stomata to environmental signals differ from those of their relatives in seed plants. However, it is unknown whether the biophysical properties of guard cells differ fundamentally between species of both clades. Intracellular micro-electrodes and the fluorescent Ca2+ reporter FURA2 were used to study voltage-dependent cation channels and Ca2+ signals in guard cells of the ferns Polypodium vulgare and Asplenium scolopendrium. Voltage clamp experiments with fern guard cells revealed similar properties of voltage-dependent K+ channels as found in seed plants. However, fluorescent dyes moved within the fern stomata, from one guard cell to the other, which does not occur in most seed plants. Despite the presence of plasmodesmata, which interconnect fern guard cells, Ca2+ signals could be elicited in each of the cells individually. Based on the common properties of voltage-dependent channels in ferns and seed plants, it is likely that these key transport proteins are conserved in vascular plants. However, the symplastic connections between fern guard cells in mature stomata indicate that the biophysical mechanisms that control stomatal movements differ between ferns and seed plants.


Asunto(s)
Calcio/metabolismo , Helechos/citología , Células Vegetales/metabolismo , Plasmodesmos/metabolismo , Transporte Biológico , Citosol/metabolismo , Helechos/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Polypodium/citología , Polypodium/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
13.
BMC Plant Biol ; 17(1): 107, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629324

RESUMEN

BACKGROUND: While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS: Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), ß-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS: Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.


Asunto(s)
Hordeum/fisiología , Transpiración de Plantas , Plantas Tolerantes a la Sal/fisiología , Hordeum/ultraestructura , Concentración Osmolar , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Estrés Fisiológico , Agua , Ceras
15.
Front Plant Sci ; 8: 501, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439283

RESUMEN

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

16.
Funct Plant Biol ; 44(2): 253-266, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480561

RESUMEN

Plant breeders are in the need for a convenient, reproducible, reliable and rapid screening methods to be used as a proxy for drought tolerance for a large number of genotypes. Addressing this need, we compared different physiological measures of stress in six barley (Hordeum vulgare L.) genotypes subjected to different drought treatments under glasshouse conditions. Genotypes were evaluated by measuring transpiration rate, quantum yield of PSII (chlorophyll fluorescence Fv/Fm ratio), SPAD chlorophyll meter reading, dry biomass and shoot water content. The accuracy of different methods for quantifying water stress tolerance was evaluated by measuring the rates of surviving and death in plants and leaves, and newly grown leaves after rewatering. In another experiment, the same genotypes were evaluated by applying 18% (w/v) of polyethylene glycol (PEG) to germinating seeds grown in paper rolls to induce osmotic stress, using relative root and shoot lengths as a measure of tolerance. The results suggest that transpiration measurements at the recovery stage could be the most sensitive method for separating contrasting genotypes. However, the method is time-consuming and laborious for large-scale screening. Chlorophyll content, dry biomass, shoot water content and stomatal density did not correlate with plant drought tolerance. At the same time, chlorophyll fluorescence Fv/Fm ratio showed a strong correlation with drought tolerance and could be recommended as suitable proxy for screening. Measuring relative root growth rate (length) using PEG-treated paper roll-grown seedlings also seems to be a highly suitable and promising method for screening a large number of genotypes in breeding programs.

18.
New Phytol ; 209(1): 123-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26378984

RESUMEN

The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem.


Asunto(s)
Cycadopsida/fisiología , Magnoliopsida/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas , Agua/fisiología , Madera
19.
Plant Cell Environ ; 39(3): 694-705, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26510650

RESUMEN

Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.


Asunto(s)
Helechos/fisiología , Estomas de Plantas/fisiología , Vapor , Helechos/anatomía & histología , Modelos Biológicos , Factores de Tiempo
20.
Tree Physiol ; 36(2): 218-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26612850

RESUMEN

The Araucariaceae is an iconic tree family. Once globally important, the Araucariaceae declined dramatically over the Cenozoic period. Increasing aridity is thought to be responsible for extinction and range contraction of Araucariaceae in Australia, yet little is known about how these trees respond to water stress. We examined the response to water stress of the recently discovered tree Wollemia nobilis Jones, W.G., Hill, K.D. & Allen, J.M. (Araucariaceae) and two closely related and widespread tree species, Araucaria bidwillii Hook. and Araucaria cunninghamii Mudie, and the island-endemic species, Araucaria heterophylla (Salisb.) Franco. Leaf water potential in all Araucaria spp. remained remarkably unchanged during both dehydration and rehydration, indicating strong isohydry. The xylem tensions at which shoot and stem hydraulic conductances were reduced to 50% (P50shoot and P50stem) were closely correlated in all species. Among the four species, W. nobilis exhibited greater resistance to xylem hydraulic dysfunction during water stress (as indicated by P50shoot and P50stem). Unexpectedly, W. nobilis also experienced the highest levels of crown mortality in response to dehydration, suggesting that this was the most drought-sensitive species in this study. Our results highlight that single traits (e.g., P50) should not be used in isolation to predict drought survival. Further, we found no clear correlation between species' P50 and rainfall across their distributional range. Diversity in drought response among these closely related Araucariaceae species was surprisingly high, considering their reputation as a functionally conservative family.


Asunto(s)
Sequías , Tracheophyta/fisiología , Árboles/fisiología , Agua/fisiología , Australia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA