Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Exp Med ; 218(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760042

RESUMEN

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Asunto(s)
Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide/genética , Mitocondrias/genética , Mutación , Enfermedad Aguda , Aminopiridinas/farmacología , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Células HL-60 , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Triazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Nat Commun ; 11(1): 4056, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792483

RESUMEN

Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia/metabolismo , Mitocondrias/metabolismo , Animales , Autofagia/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Citometría de Flujo , Humanos , Leucemia/genética , Leucemia Mieloide Aguda/patología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lipogénesis/genética , Lipogénesis/fisiología , Ratones , Mitocondrias/genética , Oxidación-Reducción , Fosforilación Oxidativa
3.
Haematologica ; 104(7): 1428-1439, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30679328

RESUMEN

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the ALK gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response. Here, we observed that crizotinib-mediated inactivation of ALK caused an increase in BCL2 levels that restrained the cytotoxic effects of the drug. BCL2 downregulation in combination with crizotinib treatment potentiated loss of cell viability through both an increase in autophagic flux and cell death, including apoptosis. More importantly, our data revealed that the blockade of autophagic flux completely reversed impaired cell viability, which demonstrates that excessive autophagy is associated with cell death. We propose that the downregulation of BCL2 protein, which plays a central role in the autophagic and apoptotic machinery, combined with crizotinib treatment may represent a promising therapeutic alternative to current ALK-positive anaplastic large cell lymphoma treatments.


Asunto(s)
Quinasa de Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacología , Autofagia , Crizotinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma Anaplásico de Células Grandes/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasa de Linfoma Anaplásico/genética , Animales , Muerte Celular , Proliferación Celular/efectos de los fármacos , Humanos , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Discov ; 7(7): 716-735, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416471

RESUMEN

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Asunto(s)
Citarabina/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Antígenos CD36/genética , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Citarabina/efectos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fosforilación Oxidativa/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA