Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Biol ; 218(11): 3548-3559, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31597679

RESUMEN

Tropomyosin is a coiled-coil actin binding protein key to the stability of actin filaments. In muscle cells, tropomyosin is subject to calcium regulation, but its regulation in nonmuscle cells is not understood. Here, we provide evidence that the fission yeast tropomyosin, Cdc8, is regulated by phosphorylation of a serine residue. Failure of phosphorylation leads to an increased number and stability of actin cables and causes misplacement of the division site in certain genetic backgrounds. Phosphorylation of Cdc8 weakens its interaction with actin filaments. Furthermore, we show through in vitro reconstitution that phosphorylation-mediated release of Cdc8 from actin filaments facilitates access of the actin-severing protein Adf1 and subsequent filament disassembly. These studies establish that phosphorylation may be a key mode of regulation of nonmuscle tropomyosins, which in fission yeast controls actin filament stability and division site placement.


Asunto(s)
Actinas/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Tropomiosina/metabolismo , Fosforilación
2.
J Cell Sci ; 131(15)2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29930079

RESUMEN

Life is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both in vivo and in vitro We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells. By using yeast, we investigated the impact of hydrostatic pressure upon cell growth and cell-cycle progression. While 100 bar has no effect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long undivided cells that are also bent, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent effects were observed in Candida albicans, with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy-based approach to transiently impact molecular dynamics in order to visualise, dissect and study signalling pathways and cellular processes in living cells.


Asunto(s)
Ciclo Celular/fisiología , Presión Hidrostática , Candida albicans/citología , Candida albicans/metabolismo , Proliferación Celular/fisiología , Microscopía Fluorescente , Simulación de Dinámica Molecular , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo
3.
Biochem Biophys Res Commun ; 506(2): 339-346, 2018 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-29080743

RESUMEN

The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine-tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Acetilación , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/genética , Alelos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Movimiento Celular , Calor , Cinética , Mutación , Conformación Proteica en Hélice alfa , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Schizosaccharomyces/citología , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
4.
FEBS Lett ; 591(6): 833-841, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28214355

RESUMEN

Amino-terminal acetylation is a ubiquitous protein modification affecting the majority of eukaryote proteins to regulate stability and function. We describe an optimised recombinant expression system for rapid production of amino terminal-acetylated proteins within bacteria. We go on to describe the system's use in a fluorescence based in vivo assay for use in the high-throughput screen to identify drugs that impact amino-terminal acetylation-dependent oligomerisation. These new tools and protocols will allow researchers to enhance routine recombinant protein production and identify new molecules for use in research and clinical applications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes/química , Xenobióticos/farmacología , alfa-Sinucleína/química , Acetilación/efectos de los fármacos , Western Blotting , Escherichia coli/genética , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
FEBS Lett ; 590(18): 3111-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27501521

RESUMEN

The dynamic nature of actin polymers is modulated to facilitate a diverse range of cellular processes. These dynamic properties are determined by different isoforms of tropomyosin which are recruited to distinct subpopulations of actin polymers to differentially regulate their functional properties. This makes tropomyosin an attractive target for labelling discrete actin populations. We have assessed the effect of different fluorescent labelling strategies for this protein. Although tropomyosin-fluorescent fusions decorate actin in vivo, they are either nonfunctional or perturb regulation of actin nucleation and cell cycle timings. Thus, conclusions and physiological relevance should be carefully evaluated when using tropomyosin fusions.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Tropomiosina/metabolismo , Actinas/metabolismo , Proteínas Fluorescentes Verdes/genética , Imagen Molecular/métodos , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Tropomiosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA