RESUMEN
BACKGROUND: Acute graft-versus-host disease (aGvHD) is a major cause of death for patients following allogeneic hematopoietic stem cell transplantation (HSCT). Effective management of moderate to severe aGvHD remains challenging despite recent advances in HSCT, emphasizing the importance of prophylaxis and risk factor identification. METHODS: In this study, we analyzed data from 1479 adults who underwent HSCT between 2005 and 2017 to investigate the effects of aGvHD prophylaxis and time-dependent risk factors on the development of grades II-IV aGvHD within 100 days post-HSCT. RESULTS: Using a dynamic longitudinal time-to-event model, we observed a non-monotonic baseline hazard overtime with a low hazard during the first few days and a maximum hazard at day 17, described by Bateman function with a mean transit time of approximately 11 days. Multivariable analysis revealed significant time-dependent effects of white blood cell counts and cyclosporine A exposure as well as static effects of female donors for male recipients, patients with matched related donors, conditioning regimen consisting of fludarabine plus total body irradiation, and patient age in recipients of grafts from related donors on the risk to develop grades II-IV aGvHD. Additionally, we found that higher cumulative hazard on day 7 after allo-HSCT are associated with an increased incidence of grades II-IV aGvHD within 100 days indicating that an individual assessment of the cumulative hazard on day 7 could potentially serve as valuable predictor for later grades II-IV aGvHD development. Using the final model, stochastic simulations were performed to explore covariate effects on the cumulative incidence over time and to estimate risk ratios. CONCLUSION: Overall, the presented model showed good descriptive and predictive performance and provides valuable insights into the interplay of multiple static and time-dependent risk factors for the prediction of aGvHD.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Trasplante Homólogo , Humanos , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Factores de Riesgo , Trasplante Homólogo/efectos adversos , Acondicionamiento Pretrasplante/efectos adversos , Acondicionamiento Pretrasplante/métodos , Adulto Joven , Enfermedad Aguda , Factores de Tiempo , Adolescente , Anciano , Ciclosporina/uso terapéuticoRESUMEN
Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hematologic diseases but can entail HCT-specific complications, which may be minimized by appropriate patient management, supported by accurate, individual risk estimation. However, almost all HCT risk scores are limited to a single risk assessment before HCT without incorporation of additional data. We developed machine learning models that integrate both baseline patient data and time-dependent laboratory measurements to individually predict mortality and cytomegalovirus (CMV) reactivation after HCT at multiple time points per patient. These gradient boosting machine models provide well-calibrated, time-dependent risk predictions and achieved areas under the receiver-operating characteristic of 0.92 and 0.83 and areas under the precision-recall curve of 0.58 and 0.62 for prediction of mortality and CMV reactivation, respectively, in a 21-day time window. Both models were successfully validated in a prospective, non-interventional study and performed on par with expert hematologists in a pilot comparison.