Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Animals (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978649

RESUMEN

Pre-weaned dairy calves are very susceptible to disease in the first months of life due to having a naïve immune system and because of the numerous physiological stressors they face. Hygiene management is a key element in minimizing enteric disease risk in calves by reducing their exposure to pathogens. Samples of milk, concentrate feed and drinking water, boot swabs of bedding and swabs of feed equipment were collected from 66 dairy farms as part of a survey of calf rearing practice and housing design. All the samples were cultured to determine total viable counts (TVC), total coliforms (TCC) and Escherichia coli as indicators of hygiene. Target ranges for levels of TVC, TCC and E. coli were defined from the literature and the sample results compared against them. The TVC targets in milk, MR and water were <4.0 log10 CFU/mL. TCC and E. coli targets of <1.1 log10 CFU/mL (the detection limit) were used for milk, MR, concentrate feed and feeding equipment. For water, the TCC and E. coli targets were <1.0 log10 CFU/100 mL. The targets used for bedding boot swabs were <6.3 log10 TVC CFU/mL and <5.7 log10 TCC or E. coli CFU/mL. Farm management factors were included as fixed effects in a generalized linear mixed model to determine the probability of samples being within each hygiene indicator target range. Milk replacer samples obtained from automatic feeders were more likely to be within the TVC target range (0.63 probability) than those prepared manually (0.34) or milk samples taken from the bulk tank (0.23). Concentrate feed samples taken from buckets in single-calf pens were more likely to have E. coli detected (0.89) than samples taken from group pen troughs (0.97). A very small proportion of water samples were within the indicator targets (TVC 9.8%, TCC 6.0%, E. coli 10.2%). Water from self-fill drinkers had a lower likelihood of being within the TVC target (0.03) than manually filled buckets (0.14), and water samples from single pens were more likely to be within TCC target ranges (0.12) than those from group pens (0.03). However, all self-fill drinkers were located in group pens so these results are likely confounded. Where milk feeders were cleaned after every feed, there was a greater likelihood of being within the TVC target range (0.47, compared with 0.23 when not cleaned after every feed). Detection of coliforms in milk replacer mixing utensils was linked with reduced probability of TVC (0.17, compared with 0.43 when coliforms were not detected) and TCC (0.38, compared with 0.62), which was within target in feeders. Key factors related to increased probability of bedding samples being within TCC target range were use of group calf pens (0.96) rather than single-calf pens (0.80), use of solid floors (0.96, compared with 0.76 for permeable floors) and increased space allowance of calves (0.94 for pens with ≥2 m2/calf, compared with 0.79 for pens with <2 m2/calf). Bedding TVC was more likely to be within the target range in group (0.84) rather than in single pens (0.66). The results show that hygiene levels in the calf rearing environment vary across farms and that management and housing design impact hygiene.

2.
Animals (Basel) ; 11(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208877

RESUMEN

The first few months of life are of great importance to the longevity and lifetime performance of dairy cows. The nutrition, environment and healthcare management of heifer calves must be sufficient to minimise exposure to stress and disease and enable them to perform to their genetic potential. Lack of reporting of farm management practices in Northern Ireland (NI) makes it difficult to understand where issues impacting health, welfare and performance may occur in the rearing process. The objective of this study was to investigate housing design and management practices of calves on 66 dairy farms across NI over a 3-month period and also identify areas that may cause high risk of poor health and performance in dairy calves. An initial survey was used to detail housing and management practices, with two subsequent visits to each farm used to collect animal and housing-based measurements linked to hygiene management, animal health and performance. Large variations in key elements such as weaning criteria and method, calf grouping method used, nutritional feed plane, and routine hygiene management were identified. The specification of housing, in particular ventilation and stocking density, was highlighted as a potential limiting factor for calf health and performance. Lack of measurement of nutritional inputs, hygiene management practices and calf performance was observed. This poses a risk to farmers' ability to ensure the effectiveness of key management strategies and recognise poor calf performance and health.

3.
Pharmacoepidemiol Drug Saf ; 29(12): 1605-1615, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32897626

RESUMEN

PURPOSE: To explore patterns of antimuscarinic medication as a risk factor for type 2 diabetes mellitus (T2DM). METHODS: This is a retrospective cohort study of females 18 years or older within the Military Health System from 2006 to 2016. Administrative and claims data were used to select patients who initiated therapy with tolterodine, fesoterodine, oxybutynin, darifenacin, solifenacin, or trospium. Patients with no documented history of T2DM were followed for the occurrence of T2DM, the end of the study or loss of eligibility. Rates of T2DM were calculated for the overall population, by duration of therapy and by individual drugs. Crude and adjusted Cox proportional hazards were calculated to assess differences by duration of use and specific muscarinic antagonist. RESULTS: Over 2.6 million antimuscarinic prescriptions were dispensed to 241 829 females (mean age/SD, 62 ± 18 years). Patients exposed to M3 selective antagonists had highest risk of developing T2DM compared to those exposed to nonselective antagonists. Using oxybutynin, a nonselective antagonist as a comparator, adjusted rate ratios of T2DM were 57% (HR 1.57, 95%CI 1.48-1.67) and 29% (HR 1.29, 95%CI 1.24-1.35) significantly higher for darifenacin and solifenacin, respectively (both M3 selective). CONCLUSIONS: We found exposure to M3 selective antagonists darifenacin and solifenacin had the highest risk of developing T2DM compared to nonselective antagonist oxybutynin. This is supported by well described physiologic mechanisms and may allow for more informed prescribing decisions, particularly if minimizing risk of T2DM is a priority.


Asunto(s)
Diabetes Mellitus Tipo 2 , Servicios de Salud Militares , Vejiga Urinaria Hiperactiva , Adulto , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Persona de Mediana Edad , Antagonistas Muscarínicos/efectos adversos , Estudios Retrospectivos
4.
Insect Sci ; 27(5): 1067-1078, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31339228

RESUMEN

American chestnut (Castanea dentata [Marsh.] Borkh.) was once the dominant hardwood species in Eastern North America before an exotic fungal pathogen, Cryphonectria parasitica (Murrill) Barr, functionally eliminated it across its range. One promising approach toward restoring American chestnut to natural forests is development of blight-tolerant trees using genetic transformation. However, transformation and related processes can result in unexpected and unintended phenotypic changes, potentially altering ecological interactions. To assess unintended tritrophic impacts of transgenic American chestnut on plant-herbivore interactions, gypsy moth (Lymantria dispar L.) caterpillars were fed leaf disks excised from two transgenic events, Darling 54 and Darling 58, and four control American chestnut lines. Leaf disks were previously treated with an LD50 dose of either the species-specific Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) or the generalist pathogen Bacillus thuringiensis subsp. kurstaki (Btk). Mortality was quantified and compared to water blank controls. Tree genotype had a strong effect on the efficacies of both pathogens. Larval mortality from Btk-treated foliage from only one transgenic event, Darling 54, differed from its isogenic progenitor, Ellis 1, but was similar to an unrelated wild-type American chestnut control. LdMNPV efficacy was unaffected by genetic transformation. Results suggest that although genetic modification of trees may affect interactions with other nontarget organisms, this may be due to insertion effects, and variation among different genotypes (whether transgenic or wild-type) imparts a greater change in response than transgene presence.


Asunto(s)
Bacillus thuringiensis/fisiología , Fagus/genética , Genotipo , Herbivoria , Mariposas Nocturnas/fisiología , Nucleopoliedrovirus/fisiología , Animales , Ascomicetos/fisiología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Larva/virología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/virología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Plantas Modificadas Genéticamente/genética
5.
J Histochem Cytochem ; 66(4): 229-239, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290145

RESUMEN

Circulating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs). Considering cellular assays have shown that NACs have similar CXCR2 activity, the question has been and remains, why do humans express so many NACs? In this review, we make the case that NACs are not redundant and that distinct GAG interactions determine chemokine-specific in vivo functions. Structural studies have shown that the GAG-binding interactions of NACs are distinctly different, and that conserved and specific residues in the context of structure determine geometries that could not have been predicted from sequences alone. Animal studies indicate recruitment profiles of monomers and dimers are distinctly different, monomer-dimer equilibrium regulates recruitment, and that recruitment profiles vary between chemokines and between tissues, providing evidence that GAG interactions orchestrate neutrophil recruitment. We propose in vivo GAG interactions impact several chemokine properties including gradients and lifetime, and that these interactions fine-tune and define the functional response of each chemokine that can vary between different cell and tissue types for successful resolution of inflammation.


Asunto(s)
Quimiocinas/inmunología , Glicosaminoglicanos/inmunología , Inmunidad Innata , Inflamación/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Secuencia de Aminoácidos , Animales , Movimiento Celular , Quimiocinas/química , Humanos , Modelos Moleculares , Neutrófilos/citología , Alineación de Secuencia
6.
Front Immunol ; 8: 1248, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29038657

RESUMEN

Platelet-derived chemokine CXCL7 (also known as NAP-2) plays a crucial role in orchestrating neutrophil recruitment in response to vascular injury. CXCL7 exerts its function by activating the CXC chemokine receptor 2 (CXCR2) receptor and binding sulfated glycosaminoglycans (GAGs) that regulate receptor activity. CXCL7 exists as monomers, dimers, and tetramers, and previous studies have shown that the monomer dominates at lower and the tetramer at higher concentrations. These observations then raise the question: what, if any, is the role of the dimer? In this study, we make a compelling observation that the dimer is actually the favored form in the GAG-bound state. Further, we successfully characterized the structural basis of dimer binding to GAG heparin using solution nuclear magnetic resonance (NMR) spectroscopy. The chemical shift assignments were obtained by exploiting heparin binding-induced NMR spectral changes in the WT monomer and dimer and also using a disulfide-linked obligate dimer. We observe that the receptor interactions of the dimer are similar to the monomer and that heparin-bound dimer is occluded from receptor interactions. Cellular assays also show that the heparin-bound CXCL7 is impaired for CXCR2 activity. We conclude that the dimer-GAG interactions play an important role in neutrophil-platelet crosstalk, and that these interactions regulate gradient formation and the availability of the free monomer for CXCR2 activation and intrathrombus neutrophil migration to the injury site.

7.
Int J Mol Sci ; 18(4)2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368308

RESUMEN

Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a "trapped" disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.


Asunto(s)
Glicosaminoglicanos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Multimerización de Proteína , beta-Tromboglobulina/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Calcio/metabolismo , Quimiocina CXCL1/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Glicosaminoglicanos/metabolismo , Células HL-60 , Heparina/química , Heparina/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Oligosacáridos/química , Oligosacáridos/metabolismo , Factor Plaquetario 4/química , Factor Plaquetario 4/genética , Factor Plaquetario 4/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
8.
Int J Mol Sci ; 18(3)2017 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-28245630

RESUMEN

CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG). CXCL7 exists as monomers and dimers, and dimerization (~50 µM) and CXCR2 binding (~10 nM) constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR) spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd) that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.


Asunto(s)
Heparina/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Receptores de Interleucina-8B/química , beta-Tromboglobulina/química , Secuencia de Aminoácidos , Sitios de Unión , Heparina/metabolismo , Humanos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Multimerización de Proteína , Receptores de Interleucina-8B/metabolismo , Relación Estructura-Actividad , beta-Tromboglobulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA