Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Behav Immun ; 122: 27-43, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098436

RESUMEN

Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.


Asunto(s)
Técnicas de Cocultivo , Células Madre Pluripotentes Inducidas , Interleucina-6 , Microglía , Células-Madre Neurales , Humanos , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Diferenciación Celular/efectos de los fármacos , Receptores de Interleucina-6/metabolismo , Células Cultivadas , Transcriptoma , Citocinas/metabolismo
2.
J Psychiatr Res ; 160: 204-209, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848775

RESUMEN

The glutamatergic system may be central to the neurobiology and treatment of major depressive disorder (MDD) and psychosis. Despite the success of N-methyl-D-aspartate receptor (NMDAR) antagonists for the treatment of MDD, little is known regarding the expression of these glutamate receptors in MDD. In this study we measured gene expression, via qRT-PCR, of the major NMDAR subunits, in the anterior cingulate cortex (ACC) in MDD subjects with and without psychosis, and non-psychiatric controls. Overall, GRIN2B mRNA was increased in both MDD with (+32%) and without psychosis (+40%) compared to controls along with a trend increase in GRIN1 mRNA in MDD overall (+24%). Furthermore, in MDD with psychosis there was a significant decrease in the GRIN2A:GRIN2B mRNA ratio (-19%). Collectively these results suggest dysfunction of the glutamatergic system at the gene expression level in the ACC in MDD. Increased GRIN2B mRNA in MDD, along with an altered GRIN2A:GRIN2B ratio in psychotic depression, suggests a disruption to NMDAR composition could be present in the ACC in MDD; this could lead to enhanced signalling via GluN2B-containing NMDARs and greater potential for glutamate excitotoxicity in the ACC in MDD. These results support future research into GluN2B antagonist-based treatments for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de N-Metil-D-Aspartato , Humanos , Depresión/psicología , Trastorno Depresivo Mayor/genética , Expresión Génica , Giro del Cíngulo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Mensajero/metabolismo
3.
J Psychiatr Res ; 147: 203-211, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063739

RESUMEN

Evidence, largely obtained from peripheral studies, suggests that alterations in the kynurenine pathway contribute to the aetiology of depression and disorders involving psychosis. Stimulation of the kynurenine pathway leads to the formation of neuroactive metabolites, including kynurenic acid (predominantly in astrocytes) and quinolinic acid (predominantly in microglia), which are antagonists and agonists of the glutamate NMDA receptor, respectively. In this study, we measured gene expression via qRT-PCR of the main kynurenine pathway enzymes in the anterior cingulate cortex (ACC) in people with major depressive disorder and matched controls. In parallel, we tested for diagnostic differences in gene expression of relevant glial markers. We used total RNA isolated from the ACC from depression subjects with psychosis (n = 12) and without psychosis (n = 12), and non-psychiatric controls (n = 12) provided by the Stanley Medical Research Institute. In the ACC, KYAT1 (KAT I), AADAT (KAT II), and the astrocytic SLC1A2 (EAAT2) mRNAs, were significantly increased in depression, when combining those with and without psychosis. The increased KYAT1 and AADAT mRNA indicates that depression is associated with increased activation of the kynurenic acid arm of the kynurenine pathway in the ACC, suggesting an astrocyte response in depression. Considering EAAT2 and KATs increase astrocytic glutamate uptake and production of the NMDA receptor antagonist kynurenic acid, the observed increases of these markers may relate to changes in glutamatergic signalling in depression. These results suggest dysfunction of the kynurenine pathway in the brain in depression and point to the kynurenine pathway as a possible driver of glutamate dysfunction in depression.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Psicóticos , Astrocitos/metabolismo , Depresión , Trastorno Depresivo Mayor/metabolismo , Humanos , Ácido Quinurénico/metabolismo , Quinurenina
4.
J Neuroimmunol ; 364: 577813, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093761

RESUMEN

Maternal immune activation (MIA) with poly(I:C) is a preclinical paradigm for schizophrenia and autism research. Methodological variations, including poly(I:C) molecular weight, contribute to inconsistencies in behavioural and molecular outcomes. We established in Wistar rats that 4 mg/kg high molecular weight (HMW)-poly(I:C) on GD19 induces maternal sickness, smaller litters and maternal elevations of serum cytokines, including increases in monocyte chemoattractants. In adult offspring, we found that males have higher serum cytokines than females, and MIA did not alter peripheral cytokines in either sex. Our study will contribute to the effective use of the MIA model to elucidate the neurobiology of neurodevelopmental disorders.


Asunto(s)
Proteínas Quimioatrayentes de Monocitos/inmunología , Trastornos del Neurodesarrollo/inmunología , Poli I-C/toxicidad , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Citocinas/sangre , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Masculino , Poli I-C/inmunología , Embarazo , Ratas , Ratas Wistar
5.
Mol Brain ; 14(1): 96, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174930

RESUMEN

Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 - 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < - 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.


Asunto(s)
Biomarcadores/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas GABAérgicas/patología , Mesencéfalo/patología , Esquizofrenia/patología , Adulto , Anciano , Estudios de Cohortes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Regulación de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/patología , Parvalbúminas/metabolismo , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Esquizofrenia/genética , Somatostatina/genética , Somatostatina/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico
6.
Front Immunol ; 11: 2002, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133060

RESUMEN

Increased cytokine and inflammatory-related transcripts are found in the ventral midbrain, a dopamine neuron-rich region associated with schizophrenia symptoms. In fact, half of schizophrenia cases can be defined as having a "high inflammatory/immune biotype." Recent studies implicate both complement and macrophages in cortical neuroinflammation in schizophrenia. Our aim was to determine whether measures of transcripts related to phagocytosis/macrophages (CD163, CD64, and FN1), or related to macrophage adhesion [intercellular adhesion molecule 1 (ICAM1)], or whether CD163+ cell density, as well as protein and/or gene expression of complement pathway activators (C1qA) and mediators (C3 or C4), are increased in the midbrain in schizophrenia, especially in those with a high inflammatory biotype. We investigated whether complement mRNA levels correlate with macrophage and/or microglia and/or astrocyte markers. We found CD163+ cells around blood vessels and in the parenchyma and increases in ICAM1, CD163, CD64, and FN1 mRNAs as well as increases in all complement transcripts in the midbrain of schizophrenia cases with high inflammation. While we found positive correlations between complement transcripts (C1qA and C3) and microglia or astrocyte markers across diagnostic and inflammatory subgroups, the only unique strong positive correlation was between CD163 and C1qA mRNAs in schizophrenia cases with high inflammation. Our study is the first to suggest that more circulating macrophages may be attracted to the midbrain in schizophrenia, and that increased macrophages are linked to increased complement pathway activation in tissue and may contribute to dopamine dysregulation in schizophrenia. Single-cell transcriptomic studies and mechanistic preclinical studies are required to test these possibilities.


Asunto(s)
Complemento C1q/metabolismo , Complemento C3/metabolismo , Macrófagos/fisiología , Mesencéfalo/fisiología , Esquizofrenia/inmunología , Adulto , Anciano , Estudios de Cohortes , Complemento C1q/genética , Complemento C3/genética , Complemento C4/genética , Complemento C4/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA