Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Pollut Res Int ; 31(22): 33086-33097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676867

RESUMEN

Terrestrial microinvertebrates provide important carbon and nutrient cycling roles in soil environments, particularly in Antarctica where larger macroinvertebrates are absent. The environmental preferences and ecology of rotifers and tardigrades in terrestrial environments, including in Antarctica, are not as well understood as their temperate aquatic counterparts. Developing laboratory cultures is critical to provide adequate numbers of individuals for controlled laboratory experimentation. In this study, we explore aspects of optimising laboratory culturing for two terrestrially sourced Antarctic microinvertebrates, a rotifer (Habrotrocha sp.) and a tardigrade (Acutuncus antarcticus). We tested a soil elutriate and a balanced salt solution (BSS) to determine their suitability as culturing media. Substantial population growth of rotifers and tardigrades was observed in both media, with mean rotifer population size increasing from 5 to 448 ± 95 (soil elutriate) and 274 ± 78 (BSS) individuals over 60 days and mean tardigrade population size increasing from 5 to 187 ± 65 (soil elutriate) and 138 ± 37 (BSS) over 160 days. We also tested for optimal dilution of soil elutriate in rotifer cultures, with 20-80% dilutions producing the largest population growth with the least variation in the 40% dilution after 36 days. Culturing methods developed in this study are recommended for use with Antarctica microinvertebrates and may be suitable for similar limno-terrestrial microinvertebrates from other regions.


Asunto(s)
Crecimiento Demográfico , Rotíferos , Suelo , Animales , Regiones Antárticas , Suelo/química , Tardigrada
2.
Environ Toxicol Chem ; 42(6): 1409-1419, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042563

RESUMEN

Anthropogenic activities in Antarctica have led to contamination of terrestrial sites, and soils in ice-free areas have elevated concentrations of metals, particularly around current and historic research stations. Effective management of Antarctic contaminated sites depends on the assessment of risks to a representative range of native terrestrial species. Bdelloid rotifers are an abundant and biodiverse component of Antarctic limnoterrestrial communities and play a key role in nutrient cycling in Antarctic ecosystems. The present study investigates the toxicity of five metals (cadmium, copper, nickel, lead, and zinc) to the endemic bdelloid rotifer Adineta editae, both singly and in metal mixtures. Based on the concentrations tested, zinc was the most toxic metal to survival with a 7-day median lethal concentration (LC50) of 344 µg Zn/L, followed by cadmium with a 7-day LC50 of 1542 µg Cd/L. Rotifers showed high sensitivity using cryptobiosis (chemobiosis) as a sublethal behavioral endpoint. Chemobiosis was triggered in A. editae at low metal concentrations (e.g., 6 µg/L Pb) and is likely a protective mechanism and survival strategy to minimize exposure to stressful conditions. Lead and copper were most toxic to rotifer behavior, with 4-day median effect concentrations (EC50s) of 18 and 27 µg/L, respectively, followed by zinc and cadmium (4-day EC50 values of 52 and 245 µg/L, respectively). The response of rotifers to the metal mixtures was antagonistic, with less toxicity observed than was predicted by the model developed from the single-metal exposure data. The present study provides evidence that this bdelloid rotifer represents a relatively sensitive microinvertebrate species to metals and is recommended for use in contaminant risk assessments in Antarctica. Environ Toxicol Chem 2023;42:1409-1419. © 2023 SETAC.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Cobre/toxicidad , Cadmio/toxicidad , Regiones Antárticas , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Metales/toxicidad , Zinc/toxicidad
3.
Ecotoxicol Environ Saf ; 249: 114345, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508834

RESUMEN

Fuel spills are a major source of contamination in terrestrial environments in Antarctica. Little is known of the effects of hydrocarbon contaminants in fuels on Antarctic terrestrial biota, and how these change as fuel ages within soil. In this study we investigate the sensitivity of juveniles of the endemic Antarctic nematode Plectus murrayi to diesel-spiked soil. Toxicity tests were conducted on soil elutriates, and changes in concentrations of hydrocarbons, polar compounds and PAHs were assessed as the spiked soil was artificially aged at 3 °C over a 45-week period, representing multiple summer seasons of fuel degradation. Nematodes were most sensitive to elutriates made from freshly spiked soils (LC50 419 µg/L TPH and 156 µg/L TPH-SG), with a subsequent decline in toxicity observed in the first 6 weeks of laboratory ageing (LC50 2945 µg/L TPH and 694 µg/L TPH-SG). Effects were still evident up to 45 weeks (lowest observed effect concentration 2123 µg/L TPH) despite hydrocarbons being depleted from soils with ageing (84 % loss) and elutriates becoming dominated by polar metabolites (95 % polar). Nematode sensitivity throughout the ageing period showed evidence of a relationship between LC50 and the proportions of the lighter carbon range fraction of TPH in elutriates, the F2 fraction (C10-14). This study is the first to estimate the sensitivity of Antarctic terrestrial fauna to diesel and provides novel data on the dynamics of fuel chemistry under Antarctic conditions and how this influences toxicity. Findings contribute to predicting ecological risk at existing diesel fuel spill sites in Antarctica, to the derivation of site-specific remediation targets, and to environmental guidelines to assess ecosystem health.


Asunto(s)
Nematodos , Contaminantes del Suelo , Animales , Regiones Antárticas , Ecosistema , Suelo/química , Hidrocarburos/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química
4.
Chemosphere ; 300: 134413, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35385763

RESUMEN

Terrestrial microinvertebrates in Antarctica are potentially exposed to contaminants due to the concentration of human activity on ice-free areas of the continent. As such, knowledge of the response of Antarctic microinvertebrates to contaminants is important to determine the extent of anthropogenic impacts. Antarctic Philodina sp. were extracted from soils and mosses at Casey station, East Antarctica and exposed to aqueous Cu for 96 h. The Philodina sp. was sensitive to excess Cu, with concentrations of 36 µg L-1 Cu (48 h) and 24 µg L-1 Cu (96 h) inhibiting activity by 50%. This is the first study to be published describing the ecotoxicologically derived sensitivity of a rotifer from a terrestrial population to metals, and an Antarctic rotifer to contaminants. It is also the first study to utilise bdelloid rotifer cryptobiosis (chemobiosis) as a sublethal ecotoxicological endpoint. This preliminary investigation highlights the need for further research into the responses of terrestrial Antarctic microinvertebrates to contaminants.


Asunto(s)
Rotíferos , Contaminantes Químicos del Agua , Animales , Regiones Antárticas , Cobre/toxicidad , Ecotoxicología , Humanos , Contaminantes Químicos del Agua/toxicidad
5.
Environ Pollut ; 287: 117627, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426394

RESUMEN

Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 µg Cu L-1 in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 µg Zn L-1 in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 µg L-1 of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Regiones Antárticas , Ecosistema , Sedimentos Geológicos , Lagos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Chemosphere ; 269: 128675, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33657749

RESUMEN

Metal contaminants in Antarctic soils are typically found around research stations which are concentrated in ice-free coastal areas. The risk of these contaminants to the Antarctic environment is not well understood, given Antarctica's unique organisms and climate. This study assessed the use of diffusive gradients in thin-films (DGT), a passive sampler that measures fluxes of labile metals from soils to porewaters, in Antarctic soils. DGT-labile measurements were compared to three chemical extractants of increasing strength including high-purity water, dilute acid (1 M HCl), and concentrated acids (3:1 v/v HNO3:HCl), to understand differences in contaminant geochemistry that may affect environmental risk. One site had high lead concentrations measured with dilute (114 ± 4 mg kg-1) and concentrated (150 ± 10 mg kg-1) acids, while DGT-labile concentrations were below the method detection limit (0.5 µg L-1), indicating that the lead species has low solubility or lability. Another site had low concentrations of zinc measured by dilute (36.2 ± 0.5 mg kg-1) or concentrated (76 ± 6 mg kg-1) acid extracts, but had high DGT-labile concentrations (350 ± 80 µg L-1). This reflects an active source of zinc supplied from soil to pore water over time. Copper was found to be acid extractable, water-soluble, and DGT-labile, with DGT-labile concentrations of up to 12 µg L-1. Despite the soil and metal-specific geochemical differences, any of the extracts could be used with statistical clustering techniques to identify differences in sites with elevated metal concentrations. This study shows that the DGT-method can identify contaminated sites comparably to chemical extracts but provides environmentally relevant measurements of metal contaminant lability in Antarctic soils.


Asunto(s)
Contaminantes del Suelo , Suelo , Regiones Antárticas , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Zinc/análisis
7.
Environ Toxicol Chem ; 39(12): 2527-2539, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32946126

RESUMEN

Antarctic marine environments are at risk from petroleum fuel spills as shipping activities in the Southern Ocean increase. Knowledge of the sensitivity of Antarctic species to fuels under environmentally realistic exposure conditions is lacking. We determined the toxicity of 3 fuels, Special Antarctic Blend diesel (SAB), marine gas oil (MGO), and intermediate fuel oil (IFO 180) to a common Antarctic sea urchin, Sterechinus neumayeri. Sensitivity was estimated for early developmental stages from fertilization to the early 4-arm pluteus in toxicity tests of up to 24 d duration. The effects of the water accommodated fractions (WAFs) of fuels were investigated under different exposure scenarios to determine the relative sensitivity of stages and of different exposure regimes. Sensitivity to fuel WAFs increased through development. Both MGO and IFO 180 were more toxic than SAB, with median effect concentration values for the most sensitive pluteus stage of 3.5, 6.5, and 252 µg/L total hydrocarbon content, respectively. Exposure to a single pulse during fertilization and early embryonic development showed toxicity patterns similar to those observed from continuous exposure. The results show that exposure to fuel WAFs during critical early life stages affects the subsequent viability of larvae, with consequent implications for reproductive success. The sensitivity estimates for S. neumayeri that we generated can be utilized in risk assessments for the management of Antarctic marine ecosystems. Environ Toxicol Chem 2020;39:2527-2539. © 2020 SETAC.


Asunto(s)
Fertilización/efectos de los fármacos , Aceites Combustibles/toxicidad , Petróleo/toxicidad , Erizos de Mar/embriología , Erizos de Mar/fisiología , Animales , Regiones Antárticas , Desarrollo Embrionario/efectos de los fármacos , Hidrocarburos/toxicidad , Larva/efectos de los fármacos , Contaminación por Petróleo , Erizos de Mar/efectos de los fármacos , Pruebas de Toxicidad , Agua , Contaminantes Químicos del Agua/toxicidad
8.
BMJ ; 368: m561, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054609
9.
Environ Toxicol Chem ; 39(2): 482-491, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31692101

RESUMEN

Environmental quality guideline values and remediation targets, specific to Antarctic ecosystems, are required for the risk assessment and remediation of contaminated sites in Antarctica. Ecotoxicological testing with Antarctic soil organisms is fundamental in determining reliable contaminant effect threshold concentrations. The present study describes the development of optimal culturing techniques and aqueous toxicity test procedures for an endemic Antarctic soil nematode, Plectus murrayi, which lives within interstitial waters between soil particles. Toxicity tests were of extended duration to account for the species' physiology and life-history characteristics. Plectus murrayi was sensitive to aqueous copper with a 50% effective concentration for egg-hatching success of 139 µg/L. Hatched juveniles that were first exposed to copper as eggs appeared to be less sensitive than those first exposed at the hatched J2 stage, indicating a potential protective effect of the egg. Sensitivity of juveniles to copper increased with exposure duration, with 50% lethal concentrations of 478 and 117 µg/L at 21 and 28 d, respectively. The present study describes new methods for the application of an environmentally relevant test species to the risk assessment of contaminants in Antarctic soil and provides the first estimates of sensitivity to a toxicant for an Antarctic terrestrial microinvertebrate. Environ Toxicol Chem 2020;39:482-491. © 2019 SETAC.


Asunto(s)
Cobre/toxicidad , Ecotoxicología/métodos , Nematodos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Regiones Antárticas , Ecosistema , Nematodos/crecimiento & desarrollo , Suelo/química , Pruebas de Toxicidad
10.
Environ Sci Technol ; 54(1): 306-315, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31657908

RESUMEN

Robust environmental assessments and contaminant monitoring in Antarctic near-shore marine environments need new techniques to overcome challenges presented by a highly dynamic environment. This study outlines an approach for contaminant monitoring and risk assessment in Antarctic marine conditions using diffusive gradients in thin-films (DGT) coupled to regionally specific ecotoxicology data and environmental quality standards. This is demonstrated in a field study where DGT samplers were deployed in the near-shore marine environment of East Antarctica around the operational Casey station and the abandoned Wilkes station to measure the time-averaged biologically available fraction of metal contaminants. The incorporation of DGT-labile concentrations to reference toxicity mixture models for three Antarctic organisms predicted low toxic effects (<5% effect to the growth or development of each organism). The comparison of metal concentrations to the Australian and New Zealand default water quality guideline values (WQGVs) showed no marine site exceeding the WQGVs for 95% species protection. However, all sites exceeded the 99% WQGVs due to copper concentrations that are likely of geogenic origin (i.e., not from anthropogenic sources). This study provides evidence supporting the use of the DGT technique to monitor contaminants and assess their environmental risk in the near-shore marine environment of Antarctica.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Regiones Antárticas , Australia , Metales , Nueva Zelanda
11.
Environ Toxicol Chem ; 36(9): 2444-2455, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28256740

RESUMEN

Toxicity testing with Antarctic species is required for risk assessment of fuel spills in Antarctic coastal waters. The lethal and sublethal (movement behavior) sensitivities of adults and juveniles of the Antarctic amphipod Paramoera walkeri to the water accommodated fractions (WAFs) of 3 fuels were estimated in extended-duration tests at -1 °C to 21 d. Response of P. walkeri for lethal hydrocarbon concentrations was slow, with 50% lethal concentrations (LC50s) first able to be estimated at 7 d for adults exposed to Special Antarctic Blend diesel (SAB), which had the highest hydrocarbon concentrations of the 3 fuel WAFs. Juveniles showed greater response to marine gas oil (MGO) and intermediate residual fuel oil (IFO 180) at longer exposure durations and were most sensitive at 21 d to IFO 180 (LC50 = 12 µg/L). Adults were initially more sensitive than juveniles; at 21 d, however, juveniles were more than twice as sensitive as adults to SAB (LC50 = 153 µg/L and 377 µg/L, respectively). Significant effects on movement behavior were evident at earlier time points and lower concentrations than was mortality in all 3 fuel WAFs, and juveniles were highly sensitive to sublethal effects of MGO. These first estimates of Antarctic amphipod sensitivity to diesel and fuel oils in seawater contribute to the development of ecologically relevant risk assessments for management of hydrocarbon contamination in the region. Environ Toxicol Chem 2017;36:2444-2455. © 2017 SETAC.


Asunto(s)
Anfípodos/efectos de los fármacos , Aceites Combustibles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anfípodos/fisiología , Animales , Regiones Antárticas , Dosificación Letal Mediana , Agua de Mar , Pruebas de Toxicidad
12.
Inorg Chem ; 56(4): 2297-2303, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28145693

RESUMEN

The synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIR light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. Specifically, the complexes required lower densities (0.9 g/cm3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm3).

13.
Mar Pollut Bull ; 110(1): 343-353, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27389459

RESUMEN

As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region.


Asunto(s)
Aceites Combustibles , Hidrocarburos/química , Contaminación por Petróleo , Agua de Mar/química , Animales , Regiones Antárticas , Frío , Ecotoxicología/métodos , Aceites Combustibles/análisis , Aceites Combustibles/toxicidad , Hidrocarburos/toxicidad , Contaminación por Petróleo/análisis , Medición de Riesgo/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
14.
J Am Chem Soc ; 138(13): 4685-92, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26986744

RESUMEN

The synthesis and characterization of air stable Fe(II) coordination complexes with tetrazine and triazolo-tetrazine ligands and perchlorate counteranions have been achieved. Time-dependent density functional theory (TD-DFT) was used to model the structural, electrochemical, and optical properties of these materials. These compounds are secondary explosives that can be initiated with Nd:YAG laser light at lower energy thresholds than those of PETN. Furthermore, these Fe(II) tetrazine complexes have significantly lower sensitivity than PETN toward mechanical stimuli such as impact and friction. The lower threshold for laser initiation was achieved by altering the electronic properties of the ligand scaffold to tune the metal ligand charge transfer (MLCT) bands of these materials from the visible into the near-infrared region of the electromagnetic spectrum. Unprecedented decrease in both the laser initiation threshold and the mechanical sensitivity makes these materials the first explosives that are both safer to handle and easier to initiate than PETN with NIR lasers.

15.
Anal Bioanal Chem ; 408(1): 35-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26462922

RESUMEN

The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.


Asunto(s)
Técnicas de Química Analítica/métodos , Sustancias Explosivas/análisis , Animales , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/tendencias
16.
Anal Bioanal Chem ; 408(1): 49-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446898

RESUMEN

The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

17.
J Phys Chem A ; 118(14): 2559-67, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24628136

RESUMEN

Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.

19.
J Phys Chem A ; 117(29): 6158-63, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23656314

RESUMEN

Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.

20.
Rev Sci Instrum ; 83(10): 103901, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126776

RESUMEN

We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s(-1) and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA