Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cortex ; 177: 180-193, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865762

RESUMEN

Understanding the neural substrate of altered conscious states is an important cultural, scientific, and clinical endeavour. Although hypnosis causes strong shifts in conscious perception and cognition, it remains largely unclear how hypnosis affects information processing in cortical networks. Here we manipulated the depth of hypnotic states to study information processing between cortical regions involved in attention and awareness. We used high-density Electroencephalography (EEG) to record resting-state cortical activity from 30 hypnosis experts during two hypnotic states with different depth. Each participant entered a light and a deep hypnotic state as well as two well-matched control states. Bridging top-down and lateralisation models of hypnosis, we found that interhemispheric frontoparietal connectivity distinguished hypnosis and control conditions, while no difference was found between the two hypnotic states. Using a graph-theoretic measure, we revealed that the amount of information passing through individual nodes (measured via betweenness centrality) is reduced during hypnosis relative to control states. Finally, we found that theta power was enhanced during hypnosis. Our result contributes to the current discussion around a role for theta power in bringing about hypnotic states, as well as other altered conscious states. Overall, our findings support the notion that altered top-down control in frontoparietal regions facilitates hypnosis by integrating information between cortical hemispheres.

2.
Front Hum Neurosci ; 17: 1286336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192504

RESUMEN

While there's been clinical success and growing research interest in hypnosis, neurobiological underpinnings induced by hypnosis remain unclear. In this fMRI study (which is part of a larger hypnosis project) with 50 hypnosis-experienced participants, we analyzed neural and physiological responses during two hypnosis states, comparing them to non-hypnotic control conditions and to each other. An unbiased whole-brain analysis (multi-voxel- pattern analysis, MVPA), pinpointed key neural hubs in parieto-occipital-temporal areas, cuneal/precuneal and occipital cortices, lingual gyri, and the occipital pole. Comparing directly both hypnotic states revealed depth-dependent connectivity changes, notably in left superior temporal/supramarginal gyri, cuneus, planum temporale, and lingual gyri. Multi-voxel- pattern analysis (MVPA) based seeds were implemented in a seed-to-voxel analysis unveiling region-specific increases and decreases in functional connectivity patterns. Physiologically, the respiration rate significantly slowed during hypnosis. Summarized, these findings foster fresh insights into hypnosis-induced functional connectivity changes and illuminate further knowledge related with the neurobiology of altered consciousness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA