Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Curr Probl Cardiol ; : 102887, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39433144

RESUMEN

PURPOSE: This study investigated whether: 1) walking training (WT) changes cardiovascular load after walking until maximal intermittent claudication (IC) in patients with peripheral artery disease (PAD); and 2) acute and chronic cardiovascular responses to walking were related to each other. METHODS: A randomized, controlled, parallel-group design was employed. Thirty-two men with PAD and IC were randomly assigned to one of two groups: WT (n=16) or control (CO, n=16) twice a week for 12 weeks. The WT group completed 15, 2-min bouts of walking at moderate intensity interspersed with 2-min upright resting intervals per session. The CO group completed 30 minutes of stretching per session. At Baseline and after 12 weeks, both groups underwent a progressive walking session to maximal IC (3.2 km/h, 2% increase in grade every 2 min). Systolic blood pressure (BP), diastolic BP, heart rate (HR), and rate pressure product (RPP) were measured pre- and post-walking. Data were analyzed by three-way mixed ANOVAs. Pearson correlations were used to explore the association between the acute and chronic responses. RESULTS: WT significantly reduced pre- and post-walking systolic BP (p<0.001), diastolic BP (p<0.001), and RPP (p<0.001). No significant correlations were found between the acute and chronic changes observed for all variables (all p>0.05). CONCLUSION: In patients with PAD, WT decreased cardiovascular load assessed before and after walking to maximal IC. Furthermore, the acute and chronic cardiovascular responses to walking were not associated. Thus, WT may reduce the risk of immediate post-walking cardiac events in susceptible patients.

2.
Geroscience ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215795

RESUMEN

This investigation aimed to determine the effects of 24 weeks of resistance training (RT) on cardiac function in older women. Seventy-three physically independent older women were selected for this investigation. Participants were randomized into a training group (TG, n = 38) and a control group (CG, n = 35). The RT program was conducted over 24 weeks and consisted of three sessions a week. Participants performed eight exercises for the whole body in three sets of 8-12 repetitions. Tissue Doppler echocardiography was performed, according to current guidelines, before and after 24 weeks of the intervention. One-repetition maximum (1-RM) tests were used to assess muscular strength. A group vs. time interaction (P < 0.05) was shown for left ventricular end-diastolic volume (TG = - 8.3% vs. CG = - 0.6%), left ventricular end-systolic volume (TG = - 10.6% vs. CG = + 1.1%), and left atrial volume index (TG = - 9.1% vs. CG = + 3.9%). A main time effect (P < 0.05) was found for left ventricular mass index (TG = + 4.9% vs. CG = - 0.6%), septal thickness (TG = + 3.3% vs. CG = - 1.7%), left ventricular ejection fraction (TG = + 3.7% vs. CG = - 0.5%), E'/E septal (TG = - 4.8% vs. CG = + 0.5%), deceleration time (TG = - 4.1% vs. CG = + 3.9%), E septal (TG = + 4.6% vs. CG = - 0.6%), and E lateral (TG = + 5.2% vs. CG = - 1.1%). These results suggest that 24 weeks of RT improves cardiac morphological and functional variables in older women.

3.
Eur J Clin Invest ; 54(11): e14288, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39058257

RESUMEN

BACKGROUND: Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells. METHODS: This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis. RESULTS: We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance. CONCLUSION: These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.


Asunto(s)
Composición Corporal , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Rendimiento Físico Funcional , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Estudios Prospectivos , Metaboloma/fisiología , Estudios de Casos y Controles , Consumo de Oxígeno/fisiología , Tasa de Supervivencia , Calidad de Vida , Fibras Musculares Esqueléticas/metabolismo , Proliferación Celular , Prueba de Paso
5.
J Appl Physiol (1985) ; 136(2): 385-398, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174374

RESUMEN

We investigated the locomotor muscle metaboreflex control of ventilation, circulation, and dyspnea in patients with chronic obstructive pulmonary disease (COPD). Ten patients [forced expiratory volume in 1 second (FEV1; means ± SD) = 43 ± 17% predicted] and nine age- and sex-matched controls underwent 1) cycling exercise followed by postexercise circulatory occlusion (PECO) to activate the metaboreflex or free circulatory flow to inactivate it, 2) cold pressor test to interpret whether any altered reflex response was specific to the metaboreflex arc, and 3) muscle biopsy to explore the metaboreflex arc afferent side. We measured airflow, dyspnea, heart rate, arterial pressure, muscle blood flow, and vascular conductance during reflexes activation. In addition, we measured fiber types, glutathione redox balance, and metaboreceptor-related mRNAs in the vastus lateralis. Metaboreflex activation increased ventilation versus free flow in patients (∼15%, P < 0.020) but not in controls (P > 0.450). In contrast, metaboreflex activation did not change dyspnea in patients (P = 1.000) but increased it in controls (∼100%, P < 0.001). Other metaboreflex-induced responses were similar between groups. Cold receptor activation increased ventilation similarly in both groups (P = 0.46). Patients had greater type II skeletal myocyte percentage (14%, P = 0.010), lower glutathione ratio (-34%, P = 0.015), and lower nerve growth factor (NGF) mRNA expression (-60%, P = 0.031) than controls. Therefore, COPD altered the locomotor muscle metaboreflex control of ventilation. It increased type II myocyte percentage and elicited redox imbalance, potentially producing more muscle metaboreceptor stimuli. Moreover, it decreased NGF expression, suggesting a downregulation of metabolically sensitive muscle afferents.NEW & NOTEWORTHY This study's integrative physiology approach provides evidence for a specific alteration in locomotor muscle metaboreflex control of ventilation in patients with COPD. Furthermore, molecular analyses of a skeletal muscle biopsy suggest that the amount of muscle metaboreceptor stimuli derived from type II skeletal myocytes and redox imbalance overcame a downregulation of metabolically sensitive muscle afferents.


Asunto(s)
Factor de Crecimiento Nervioso , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Factor de Crecimiento Nervioso/metabolismo , Reflejo/fisiología , Músculo Esquelético/fisiología , Disnea , Glutatión/metabolismo , Presión Sanguínea/fisiología
6.
Sci Rep ; 13(1): 21970, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081853

RESUMEN

Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neoplasias del Colon , Ejercicio Físico , Factor Plaquetario 4 , Animales , Ratones , Inhibidores de la Angiogénesis , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , Línea Celular Tumoral , Neoplasias del Colon/patología , Factores Inmunológicos , Ratones Endogámicos BALB C , Factor Plaquetario 4/genética , ARN Mensajero , Esplenomegalia/metabolismo , Ejercicio Físico/fisiología
7.
Front Endocrinol (Lausanne) ; 14: 1081056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077354

RESUMEN

Introduction: Resistance exercise can significantly increase serum steroid concentrations after an exercise bout. Steroid hormones are involved in the regulation of several important bodily functions (e.g., muscle growth) through both systemic delivery and local production. Thus, we aimed to determine whether resistance exercise-induced increases in serum steroid hormone concentrations are accompanied by enhanced skeletal muscle steroid concentrations, or whether muscle contractions per se induced by resistance exercise can increase intramuscular steroid concentrations. Methods: A counterbalanced, within-subject, crossover design was applied. Six resistance-trained men (26 ± 5 years; 79 ± 8 kg; 179 ± 10 cm) performed a single-arm lateral raise exercise (10 sets of 8 to 12 RM - 3 min rest between sets) targeting the deltoid muscle followed by either squat exercise (10 sets of 8 to 12 RM - 1 min rest) to induce a hormonal response (high hormone [HH] condition) or rest (low hormone [LH] condition). Blood samples were obtained pre-exercise and 15 min and 30 min post-exercise; muscle specimens were harvested pre-exercise and 45 min post-exercise. Immunoassays were used to measure serum and muscle steroids (total and free testosterone, dehydroepiandrosterone sulfate, dihydrotestosterone, and cortisol; free testosterone measured only in serum and dehydroepiandrosterone only in muscle) at these time points. Results: In the serum, only cortisol significantly increased after the HH protocol. There were no significant changes in muscle steroid concentrations after the protocols. Discussion: Our study provides evidence that serum steroid concentration increases (cortisol only) seem not to be aligned with muscle steroid concentrations. The lack of change in muscle steroid after protocols suggests that resistance-trained individuals were desensitized to the exercise stimuli. It is also possible that the single postexercise timepoint investigated in this study might be too early or too late to observe changes. Thus, additional timepoints should be examined to determine if RE can indeed change muscle steroid concentrations either by skeletal muscle uptake of these hormones or the intramuscular steroidogenesis process.


Asunto(s)
Hidrocortisona , Músculo Esquelético , Humanos , Masculino , Dihidrotestosterona , Músculo Esquelético/fisiología , Esteroides , Testosterona , Estudios Cruzados
8.
Med Sci Sports Exerc ; 55(3): 418-429, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730960

RESUMEN

PURPOSE: To investigate the mechanoreflex control of respiration and circulation in patients with chronic obstructive pulmonary disease (COPD). METHODS: Twenty-eight patients with moderate-to-severe COPD (mean ± SD: 67.0 ± 7.9 yr, 10 women) and 14 age- and sex-matched controls (67.9 ± 2.6 yr, 7 women) participated in the study. Their dominant knee was passively moved to stimulate mechanoreceptors, whereas vastus lateralis surface electrical activity checked active contractions. A differential pressure flowmeter, an electrocardiogram, and a servo-controlled finger photoplethysmograph acquired cardiorespiratory data. To gain insight into the mechanoreflex arc, we further analyzed reduced/oxidized glutathione ratio and mechanoreceptor-related gene expression in a vastus lateralis biopsy of additional nine patients (63.9 ± 8.1 yr, 33% women) and eight controls (62.9 ± 9.1 yr, 38% women). RESULTS: Patients with COPD had a greater peak respiratory frequency response (COPD: Δ = 3.2 ± 2.3 vs Controls: 1.8 ± 1.2 cycles per minute, P = 0.036) and a smaller peak tidal volume response to passive knee movement than controls. Ventilation, heart rate, stroke volume, and cardiac output peak responses, and total peripheral resistance nadir response, were unaltered by COPD. In addition, patients had a diminished glutathione ratio (COPD: 13.3 ± 3.8 vs controls: 20.0 ± 5.5 a.u., P = 0.015) and an augmented brain-derived neurotrophic factor expression (COPD: 2.0 ± 0.7 vs controls: 1.1 ± 0.4 a.u., P = 0.002) than controls. Prostaglandin E receptor 4, cyclooxygenase 2, and Piezo1 expression were similar between groups. CONCLUSIONS: Respiratory frequency response to mechanoreceptors activation is increased in patients with COPD. This abnormality is possibly linked to glutathione redox imbalance and augmented brain-derived neurotrophic factor expression within locomotor muscles, which could increase mechanically sensitive afferents' stimulation and sensitivity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad Pulmonar Obstructiva Crónica , Femenino , Humanos , Masculino , Canales Iónicos , Rodilla , Extremidad Inferior , Mecanorreceptores/fisiología , Persona de Mediana Edad , Anciano
9.
Lung Cancer Manag ; 12(4): LMT63, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38239811

RESUMEN

Aim: To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods: Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results: Our data indicated an increased expression of ß-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of ß-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion: Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.


Lung cancer is one of the most common causes of cancer-related deaths in the world, which often goes undiagnosed until it is in an advanced stage. Recently, the autonomic nervous system (sympathetic and parasympathetic nervous systems) has been identified as a regulator of cancer growth and spread, including lung cancer. In fact, preclinical studies have demonstrated that autonomic innervation in lung cancer can trigger tumor progression, metastasis, and resistance to treatment, worsening the prognosis. In this sense, add-on strategies to standard cancer treatments have been investigating and one of them has stood out: the incidental use of ß-blockers (patients who used ß-blockers for the treatment of hypertension and/or cardiovascular diseases or anxiety) before surgeries or during chemotherapy, which has been associated with improved clinical outcomes. Thus, a scoping review was conducted to summarizing the current knowledge about the quality of evidence, gaps and main results related to the role of the autonomic nervous system in human lung cancer. Data from this review indicated an increase in sympathetic nervous system receptors associated with a worse prognosis in patients with lung cancer. Indeed, those patients who took ß-blockers along with lung cancer treatment showed an increase in survival and a reduction in the occurrence of metastases. Although the results herein seem promising, further prospective clinical studies are needed to investigate the effect of the intentional and controlled use of ß-blockers as an add-on strategy on the treatment of different types and stages of lung cancer.

11.
Stem Cell Rev Rep ; 18(7): 2431-2443, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35244862

RESUMEN

Knockout (ko) mice for the ß2 adrenoceptor (Adrß2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrß2 in the function of satellite cells from ß2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7+ satellite cells, proliferating Pax7+/MyoD+ myogenic precursor cells, and regenerating eMHC+ myofibers in regenerating muscle of ß2ko mice at 30, 3, and 10 days post-injury, respectively. Quiescent satellite cells were isolated by fluorescence-activated cell sorting, and cell cycle entry was assessed by EdU incorporation. The results demonstrated a lower number of proliferating Pax7+/EdU+ satellite cells from ß2ko mice. There was an increase in the gene expression of the cell cycle inhibitor Cdkn1a and Notch pathway components and the activation of Notch signaling in proliferating myoblasts from ß2ko mice. There was a decrease in the number of myogenin-positive nuclei in myofibers maintained in differentiation media, and a lower fusion index in differentiating myoblasts from ß2ko mice. Furthermore, the gene expression of Wnt/ß-catenin signaling components, the expression of nuclear ß-catenin and the activation of Wnt/ß-catenin signaling decreased in differentiating myoblasts from ß2ko mice. These results indicate that Adrß2 plays a crucial role in satellite cell self-renewal, as well as in myoblast proliferation and differentiation by regulating Notch and Wnt/ß-catenin signaling, respectively.


Asunto(s)
Células Satélite del Músculo Esquelético , Animales , Ratones , Ratones Noqueados , Músculos/metabolismo , Miogenina/metabolismo , Receptores Adrenérgicos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
12.
Genes (Basel) ; 14(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36672843

RESUMEN

Patients with peripheral artery disease (PAD) have reduced muscle capillary density. Walking training (WT) is recommended for PAD patients. The goal of the study was to verify whether WT promotes angiogenesis in PAD-affected muscle and to investigate the possible role of miRNA-126 and the vascular endothelium growth factor (VEGF) angiogenic pathways on this adaptation. Thirty-two men with PAD were randomly allocated to two groups: WT (n = 16, 2 sessions/week) and control (CO, n = 16). Maximal treadmill tests and gastrocnemius biopsies were performed at baseline and after 12 weeks. Histological and molecular analyses were performed by blinded researchers. Maximal walking capacity increased by 65% with WT. WT increased the gastrocnemius capillary-fiber ratio (WT = 109 ± 13 vs. 164 ± 21 and CO = 100 ± 8 vs. 106 ± 6%, p < 0.001). Muscular expression of miRNA-126 and VEGF increased with WT (WT = 101 ± 13 vs. 130 ± 5 and CO = 100 ± 14 vs. 77 ± 20%, p < 0.001; WT = 103 ± 28 vs. 153 ± 59 and CO = 100 ± 36 vs. 84 ± 41%, p = 0.001, respectively), while expression of PI3KR2 decreased (WT = 97 ± 23 vs. 75 ± 21 and CO = 100 ± 29 vs. 105 ± 39%, p = 0.021). WT promoted angiogenesis in the muscle affected by PAD, and miRNA-126 may have a role in this adaptation by inhibiting PI3KR2, enabling the progression of the VEGF signaling pathway.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Masculino , Humanos , Claudicación Intermitente/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Músculo Esquelético/metabolismo , Caminata/fisiología , MicroARNs/genética , MicroARNs/metabolismo
13.
FASEB J ; 35(7): e21714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118107

RESUMEN

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Neoplasias/patología , Estrés Oxidativo/fisiología , Animales , Caquexia/patología , Progresión de la Enfermedad , Glucólisis/fisiología , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Oxidación-Reducción , Fosforilación Oxidativa , Ratas , Ratas Wistar
14.
Front Cardiovasc Med ; 8: 605993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869297

RESUMEN

Doxorubicin causes cardiotoxicity and exercise intolerance. Pre-conditioning exercise training seems to prevent doxorubicin-induced cardiac damage. However, the effectiveness of the cardioprotective effects of exercise training concomitantly with doxorubicin treatment remains largely unknown. To determine whether low-to-moderate intensity aerobic exercise training during doxorubicin treatment would prevent cardiotoxicity and exercise intolerance, we performed exercise training concomitantly with chronic doxorubicin treatment in mice. Ventricular structure and function were accessed by echocardiography, exercise tolerance by maximal exercise test, and cardiac biology by histological and molecular techniques. Doxorubicin-induced cardiotoxicity, evidenced by impaired ventricular function, cardiac atrophy, and fibrosis. Exercise training did not preserve left ventricular ejection fraction or reduced fibrosis. However, exercise training preserved myocardial circumferential strain alleviated cardiac atrophy and restored cardiomyocyte cross-sectional area. On the other hand, exercise training exacerbated doxorubicin-induced body wasting without affecting survival. Finally, exercise training blunted doxorubicin-induced exercise intolerance. Exercise training performed during doxorubicin-based chemotherapy can be a valuable approach to attenuate cardiotoxicity.

15.
Eur J Vasc Endovasc Surg ; 61(6): 954-963, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33875324

RESUMEN

OBJECTIVE: This study examined the impact of submaximal walking training (WT) on local and systemic nitric oxide (NO) bioavailability, inflammation, and oxidative stress in patients with intermittent claudication (IC). METHODS: The study employed a randomised, controlled, parallel group design and was performed in a single centre. Thirty-two men with IC were randomly allocated to two groups: WT (n = 16, two sessions/week, 15 cycles of two minutes walking at an intensity corresponding to the heart rate obtained at the pain threshold interspersed by two minutes of upright rest) and control (CO, n = 16, two sessions/week, 30 minutes of stretching). NO bioavailability (blood NO and muscle nitric oxide synthase [eNOS]), redox homeostasis (catalase [CAT], superoxide dismutase [SOD], lipid peroxidation [LPO] measured in blood and muscle), and inflammation (interleukin-6 [IL-6], C-reactive protein [CRP], tumour necrosis factor α [TNF-α], intercellular adhesion molecules [ICAM], vascular adhesion molecules [VCAM] measured in blood and muscle) were assessed at baseline and after 12 weeks. RESULTS: WT statistically significantly increased blood NO, muscle eNOS, blood SOD and CAT, and muscle SOD and abolished the increase in circulating and muscle LPO observed in the CO group. WT decreased blood CRP, ICAM, and VCAM and muscle IL-6 and CRP and eliminated the increase in blood TNF-α and muscle TNF-α, ICAM and VCAM observed in the CO group. CONCLUSION: WT at an intensity of pain threshold improved NO bioavailability and decreased systemic and local oxidative stress and inflammation in patients with IC. The proposed WT protocol provides physiological adaptations that may contribute to cardiovascular health in these patients.


Asunto(s)
Ejercicio Físico/fisiología , Inflamación , Claudicación Intermitente , Músculo Esquelético/metabolismo , Estrés Oxidativo , Caminata/fisiología , Adaptación Fisiológica/fisiología , Proteína C-Reactiva/análisis , Prueba de Esfuerzo/métodos , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Claudicación Intermitente/sangre , Claudicación Intermitente/fisiopatología , Claudicación Intermitente/terapia , Masculino , Persona de Mediana Edad , Óxido Nítrico/análisis , Evaluación de Resultado en la Atención de Salud , Superóxido Dismutasa/análisis , Molécula 1 de Adhesión Celular Vascular/análisis
16.
Cell Rep ; 35(3): 109018, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882313

RESUMEN

Physical exercise has profound effects on quality of life and susceptibility to chronic disease; however, the regulation of skeletal muscle function at the molecular level after exercise remains unclear. We tested the hypothesis that the benefits of exercise on muscle function are linked partly to microtraumatic events that result in accumulation of circulating heme. Effective metabolism of heme is controlled by Heme Oxygenase-1 (HO-1, Hmox1), and we find that mouse skeletal muscle-specific HO-1 deletion (Tam-Cre-HSA-Hmox1fl/fl) shifts the proportion of muscle fibers from type IIA to type IIB concomitant with a disruption in mitochondrial content and function. In addition to a significant impairment in running performance and response to exercise training, Tam-Cre-HSA-Hmox1fl/fl mice show remarkable muscle atrophy compared to Hmox1fl/fl controls. Collectively, these data define a role for heme and HO-1 as central regulators in the physiologic response of skeletal muscle to exercise.


Asunto(s)
Hemo-Oxigenasa 1/genética , Hemo/metabolismo , Proteínas de la Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/genética , Condicionamiento Físico Animal/fisiología , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Animales , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Proteína MioD/genética , Proteína MioD/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
J Am Heart Assoc ; 10(5): e018076, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619982

RESUMEN

Background Patients treated for breast cancer have a high incidence of cardiovascular complications. In this study, we evaluated the impact of breast cancer on cardiac function and cardiomyocyte Ca2+-handling protein expression. We also investigated whether exercise training (ET) would prevent these potential alterations. Methods and Results Transgenic mice with spontaneous breast cancer (mouse mammary tumor virus-polyomavirus middle T antigen [MMTV-PyMT+], n=15) and littermate mice with no cancer (MMTV-PyMT-, n=14) were studied. For the ET analysis, MMTV-PyMT+ were divided into sedentary (n=10) and exercise-trained (n=12) groups. Cardiac function was evaluated by echocardiography with speckle-tracking imaging. Exercise tolerance test was conducted on a treadmill. Both studies were performed when the tumor became palpable and when it reached 1 cm3. After euthanasia, Ca2+-handling protein expression (Western blot) was evaluated. Exercise capacity was reduced in MMTV-PyMT+ compared with MMTV-PyMT- (Pinteraction=0.031). Longitudinal strain (Pgroup <0.001) and strain rate (Pgroup=0.030) were impaired. Cardiomyocyte phospholamban was increased (P=0.011), whereas phospho-phospholamban and sodium/calcium exchanger were decreased (P=0.038 and P=0.017, respectively) in MMTV-PyMT+. No significant difference in sarcoplasmic or endoplasmic reticulum calcium 2 ATPase (SERCA2a) was found. SERCA2a/phospholamban ratio was reduced (P=0.007). ET was not associated with increased exercise capacity. ET decreased left ventricular end-systolic diameter (Pgroup=0.038) and end-diastolic volume (Pgroup=0.026). Other morphological and functional cardiac parameters were not improved by ET in MMTV-PyMT+. ET did not improve cardiomyocyte Ca2+-handling protein expression. Conclusions Breast cancer is associated with decreased exercise capacity and subclinical left ventricular dysfunction in MMTV-PyMT+, which is at least partly associated with dysregulation of cardiomyocyte Ca2+ handling. ET did not prevent or reverse these changes.


Asunto(s)
Neoplasias de la Mama/complicaciones , Calcio/metabolismo , Enfermedades Cardiovasculares/etiología , Ventrículos Cardíacos/fisiopatología , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/métodos , Función Ventricular Izquierda/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Ecocardiografía Doppler , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Neoplasias Experimentales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
18.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008195

RESUMEN

Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.

19.
Clin Auton Res ; 31(2): 239-251, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32875456

RESUMEN

PURPOSE: Patients with chronic chagasic cardiomyopathy with preserved ventricular function present with autonomic imbalance. This study evaluated the effects of exercise training (ET) in restoring peripheral and cardiac autonomic control and skeletal muscle phenotype in patients with subclinical chronic chagasic cardiomyopathy. METHODS: This controlled trial (NCT02295215) included 24 chronic chagasic cardiomyopathy patients who were randomized www.random.org/lists/ into two groups: those who underwent exercise training (n = 12) and those who continued their usual activities (n = 12). Eight patients completed the exercise training protocol, and 10 patients were clinically followed up for 4 months. Muscular sympathetic nerve activity was measured by microneurography and muscle blood flow (MBF) using venous occlusion plethysmography. The low-frequency component of heart rate variability in normalized units (LFnuHR) reflects sympathetic activity in the heart, and the low-frequency component of systolic blood pressure variability in normalized units reflects sympathetic activity in the vessels. The infusion of vasoactive drugs (phenylephrine and sodium nitroprusside) was used to evaluate cardiac baroreflex sensitivity, and a vastus lateralis muscle biopsy was performed to evaluate atrogin-1 and MuRF-1 gene expression. RESULTS: The baroreflex sensitivity for increases (p = 0.002) and decreases (p = 0.02) in systolic blood pressure increased in the ET group. Muscle blood flow also increased only in the ET group (p = 0.004). Only the ET group had reduced resting muscular sympathetic nerve activity levels (p = 0.008) and sympathetic activity in the heart (LFnu; p = 0.004) and vessels (p = 0.04) after 4 months. Regarding skeletal muscle, after 4 months, participants in the exercise training group presented with lower atrogin-1 gene expression than participants who continued their activities as usual (p = 0.001). The reduction in muscular sympathetic nerve activity was positively associated with reduced atrogin-1 (r = 0.86; p = 0.02) and MuRF-1 gene expression (r = 0.64; p = 0.06); it was negatively associated with improved baroreflex sensitivity both for increases (r = -0.72; p = 0.020) and decreases (r = -0.82; p = 0.001) in blood pressure. CONCLUSIONS: ET improved cardiac and peripheral autonomic function in patients with subclinical chagasic cardiomyopathy. ET reduced MSNA and sympathetic activity in the heart and vessels and increased cardiac parasympathetic tone and baroreflex sensitivity. Regarding peripheral muscle, after 4 months, patients who underwent exercise training had an increased cross-sectional area of type I fibers and oxidative metabolism of muscle fibers, and decreased atrogin-1 gene expression, compared to participants who continued their activities as usual. In addition, the reduction in MSNA was associated with improved cardiac baroreflex sensitivity, reduced sympathetic cardiovascular tone, and reduced atrogin-1 and MuRF-1 gene expression. TRIAL REGISTRATION: ID: NCT02295215. Registered in June 2013.


Asunto(s)
Cardiomiopatía Chagásica , Sistema Nervioso Autónomo , Barorreflejo , Presión Sanguínea , Cardiomiopatía Chagásica/terapia , Ejercicio Físico , Frecuencia Cardíaca , Humanos , Músculo Esquelético , Sistema Nervioso Simpático
20.
J Cardiovasc Nurs ; 36(5): 498-506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32427794

RESUMEN

OBJECTIVE: The aim of this study was to assess the effects of a single bout of maximal walking on blood and muscle nitric oxide (NO) bioavailability, oxidative stress, and inflammation in symptomatic peripheral artery disease (PAD) patients. METHODS: A total of 35 men with symptomatic PAD performed a graded maximal exercise test on a treadmill (3.2 km/h, 2% increase in grade every 2 minutes). Plasma samples and gastrocnemius muscle biopsies were collected preexercise and postexercise for assessment of NO bioavailability (plasma NO and muscle, endothelial NO synthase), oxidative stress and antioxidant function (lipid peroxidation [LPO], catalase [CAT], and superoxide dismutase), and inflammation (interleukin-6, C-reactive protein, tumor necrosis factor-α, intercellular adhesion molecules, and vascular adhesion molecules). The effects of the walking exercise were assessed using paired t tests or Wilcoxon tests. RESULTS: After maximal walking, plasma NO and LPO were unchanged (P > .05), plasma CAT decreased, and all blood inflammatory markers increased (all P ≤ .05). In the disease-affected skeletal muscle, endothelial NO synthase, CAT, LPO, and all inflammatory markers increased, whereas superoxide dismutase decreased (all P ≤ .05). CONCLUSION: In patients with symptomatic PAD, maximal exercise induces local and systemic impairments, which may play a key role in atherogenesis. Exercise strategies that avoid maximal effort may be important to reduce local and systemic damage and enhance clinical benefits.


Asunto(s)
Enfermedad Arterial Periférica , Caminata , Prueba de Esfuerzo , Humanos , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA