Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biomater Adv ; 144: 213219, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481519

RESUMEN

Despite the crucial role of the extracellular matrix (ECM) in the organotypic organization and function of skeletal muscles, most 3D models do not mimic its specific characteristics, namely its biochemical composition, stiffness, anisotropy, and porosity. Here, a novel 3D in vitro model of muscle ECM was developed reproducing these four crucial characteristics of the native ECM. An anisotropic hydrogel mimicking the muscle fascia was obtained thanks to unidirectional 3D printing of dense collagen with aligned collagen fibrils. The space between the different layers was tuned to generate an intrinsic network of pores (100 µm) suitable for nutrient and oxygen diffusion. By modulating the gelling conditions, the mechanical properties of the construct reached those measured in the physiological muscle ECM. This artificial matrix was thus evaluated for myoblast differentiation. The addition of large channels (600 µm) by molding permitted to create a second range of porosity suitable for cell colonization without altering the physical properties of the hydrogel. Skeletal myoblasts embedded in Matrigel®, seeded within the channels, organized in 3D, and differentiated into multinucleated myotubes. These results show that porous and anisotropic dense collagen hydrogels are promising biomaterials to model skeletal muscle ECM.


Asunto(s)
Colágeno , Hidrogeles , Porosidad , Hidrogeles/análisis , Anisotropía , Colágeno/análisis , Matriz Extracelular/química , Músculo Esquelético
2.
Macromol Biosci ; 21(6): e2000435, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881218

RESUMEN

Biological tissues rich in type I collagen exhibit specific hierarchical fibrillar structures together with remarkable mechanical toughness. However, the role of collagen alone in their mechanical response at different structural levels is not fully understood. Here, it is proposed to rationalize such challenging interplay from a materials science perspective through the subtle control of this protein self-assembly in vitro. It is relied on a spray-processing approach to readily use the collagen phase diagram and set a palette of biomimetic self-assembled collagen gels in terms of suprafibrillar organization. Their mechanical responses unveil the involvement of mechanisms occurring either at fibrillar or suprafibrillar scales. Noticeably, both modulus at early stage of deformations and tensile toughness probe the suprafibrillar organization, while durability under cyclic loading and stress relaxation reflect mechanisms at the fibril level. By changing the physicochemical environment, the interfibrillar interactions are modified toward more biomimetic mechanical responses. The possibility of making tissue-like materials with versatile compositions and toughness opens perspectives in tissue engineering.


Asunto(s)
Materiales Biomiméticos/química , Colágeno Tipo I/química , Ingeniería de Tejidos/métodos , Animales , Córnea/anatomía & histología , Córnea/fisiología , Módulo de Elasticidad , Geles , Humanos , Estrés Mecánico , Porcinos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA