Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Epigenetics Chromatin ; 15(1): 30, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986423

RESUMEN

BACKGROUND: Cohesin is an important structural regulator of the genome, regulating both three-dimensional genome organization and gene expression. The core cohesin trimer interacts with various HEAT repeat accessory subunits, yielding cohesin complexes of distinct compositions and potentially distinct functions. The roles of the two mutually exclusive HEAT repeat subunits PDS5A and PDS5B are not well understood. RESULTS: Here, we determine that PDS5A and PDS5B have highly similar localization patterns across the mouse embryonic stem cell (mESC) genome and they show a strong overlap with other cohesin HEAT repeat accessory subunits, STAG1 and STAG2. Using CRISPR/Cas9 genome editing to generate individual stable knockout lines for PDS5A and PDS5B, we find that loss of one PDS5 subunit does not alter the distribution of the other PDS5 subunit, nor the core cohesin complex. Both PDS5A and PDS5B are required for proper gene expression, yet they display only partially overlapping effects on gene targets. Remarkably, gene expression following dual depletion of the PDS5 HEAT repeat proteins does not completely overlap the gene expression changes caused by dual depletion of the STAG HEAT repeat proteins, despite the overlapping genomic distribution of all four proteins. Furthermore, dual loss of PDS5A and PDS5B decreases cohesin association with NIPBL and WAPL, reduces SMC3 acetylation, and does not alter overall levels of cohesin on the genome. CONCLUSIONS: This work reveals the importance of PDS5A and PDS5B for proper cohesin function. Loss of either subunit has little effect on cohesin localization across the genome yet PDS5A and PDS5B are differentially required for gene expression.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Ratones , Factores de Transcripción/metabolismo , Cohesinas
2.
BMC Genomics ; 23(1): 337, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35501690

RESUMEN

BACKGROUND: The cohesin complex is essential for proper chromosome structure and gene expression. Defects in cohesin subunits and regulators cause changes in cohesin complex dynamics and thereby alter three-dimensional genome organization. However, the molecular mechanisms that drive cohesin localization and function remain poorly understood. RESULTS: In this study, we observe that loss of WIZ causes changes to cohesin localization that are distinct from loss of the known WIZ binding partner G9a. Whereas loss of WIZ uniformly increases cohesin levels on chromatin at known binding sites and leads to new, ectopic cohesin binding sites, loss of G9a does not. Ectopic cohesin binding on chromatin after the loss of WIZ occurs at regions that are enriched for activating histone modifications and transcription factors motifs. Furthermore, loss of WIZ causes changes in cohesin localization that are distinct from those observed by loss of WAPL, the canonical cohesin unloading factor. CONCLUSIONS: The evidence presented here suggests that WIZ can function independently from its previously identified role with G9a and GLP in heterochromatin formation. Furthermore, while WIZ limits the levels and localization pattern of cohesin across the genome, it appears to function independently of WAPL-mediated cohesin unloading.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
3.
Heart Rhythm ; 19(4): 667-673, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34843966

RESUMEN

BACKGROUND: Sudden unexpected infant death (SUID) occurs unpredictably and remains unexplained after scene investigation and autopsy. Approximately 1 in 7 cases of SUID can be related to a cardiac cause, and developmental regulation of cardiac ion channel genes may contribute to SUID. OBJECTIVE: The goal of this study was to investigate the developmental changes in the spliceoforms of SCN5A and KCNQ1, 2 genes implicated in SUID. METHODS: Using reverse transcription quantitative real-time polymerase chain reaction, we quantified expression of SCN5A (adult and fetal) and KCNQ1 (KCNQ1a and b) spliceoforms in 153 human cardiac tissue samples from decedents that succumbed to SUID ("unexplained") and other known causes of death ("explained noncardiac"). RESULTS: There is a stepwise increase in the adult/fetal SCN5A spliceoform ratio from <2 months (4.55 ± 0.36; n = 51) through infancy and into adulthood (17.41 ± 3.33; n = 5). For KCNQ1, there is a decrease in the ratio of KCNQ1b to KCNQ1a between the <2-month (0.37 ± 0.02; n = 46) and the 2- to 4-month (0.28 ± 0.02; n = 52) age groups. When broken down by sex, race, or cause of death, there were no differences in SCN5A or KCNQ1 spliceoform expression, except for a higher ratio of KCNQ1b to KCNQ1a at 5-12 months of age for SUID females (0.40 ± 0.04; n = 9) than for males (0.25 ± 0.03; n = 6) and at <2 months of age for SUID white (0.42 ± 0.03; n = 19) than for black (0.33 ± 0.05; n = 9) infants. CONCLUSION: This study documents the developmental changes in SCN5A and KCNQ1 spliceoforms in humans. Our data suggest that spliceoform expression ratios change significantly throughout the first year of life.


Asunto(s)
Canal de Potasio KCNQ1 , Canal de Sodio Activado por Voltaje NAV1.5 , Muerte Súbita del Lactante , Adulto , Muerte Súbita Cardíaca/etiología , Femenino , Humanos , Lactante , Recién Nacido , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Masculino , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Muerte Súbita del Lactante/genética
4.
Nucleic Acids Res ; 48(6): 2924-2941, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31996893

RESUMEN

WDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control. Here, we have performed comparative genomic analyses to identify the conserved sites of WDR5 binding to chromatin, and the conserved genes regulated by WDR5, across a diverse panel of cancer cell lines. We show that a specific cohort of protein synthesis genes (PSGs) are invariantly bound by WDR5, demonstrate that the WIN site anchors WDR5 to chromatin at these sites, and establish that PSGs are bona fide, acute, and persistent targets of WIN site blockade. Together, these data reveal that WDR5 plays a predominant transcriptional role in biomass accumulation and provide further evidence that WIN site inhibitors act to repress gene networks linked to protein synthesis homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Biosíntesis de Proteínas/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Cromatina/metabolismo , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Unión Proteica , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA