Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Biosens Bioelectron ; 267: 116779, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288706

RESUMEN

In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.

2.
Food Chem ; 463(Pt 3): 141297, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305646

RESUMEN

To integrate antifouling properties and good sensitivity on the sensing interface can improve the applicability of an electrochemical immunosensor. These functional regions can be integrated into a single functional peptide (functPP). The rational designed three domains in functPP were the anchoring, antifouling and gold nanoparticles (AuNPs) recognizing domains. Meanwhile, the ordered AuNPs inspired by C15H23CO-RRRRR can be recognized by AuNPs recognizing domains in functPP to enhance the intensity of detecting current. In the sensing system, the anchoring domain in functPP can be immobilized on the Au electrode by AuS interaction, while the antifouling domain undergoes strong hydration with water molecules to resist matrices, and the recognizing domains can directionally capture O-AuNPs to form a functPP-O-AuNPs complex as the core sensing element. Consequently, the complex bound to the monoclonal antibodies against zearalenone by electrostatic adsorption to develop a highly antifouling and sensitive biosensor with the ability to identify zearalenone in cereals.

3.
Int J Biol Macromol ; 278(Pt 4): 135027, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182871

RESUMEN

The bactericidal properties of traditional food coatings mostly depend on the amount of fungicides present, which reduces the sustainability of food packaging. Herein, we proposed a magnetic field to precisely modulate the near-infrared (NIR) absorption activity to enhance antimicrobial coatings sustainability. Inspired by the typical grinding procedure, the assembly of CP/Fe3O4@TA nanofiber hydrogel was proposed as the coating, applying mechanical force and encouraging the collision of effective molecules of puerarin (PUE), chitosan (CS), and Fe3O4@TA NFs. This hydrogel design offers precise control over the physical and chemical properties, including appearance, viscoelasticity, and rheology. Particularly, significant changes in photothermal performance were observed as a result of magnetic regulation of NIR absorption activity. As a result, the CP/Fe3O4@TA coatings achieve effective bacteria killing performance under NIR irradiation, magnetocaloric effect, boric acid adsorption, and aggregation interference. Finally, the hydrogel coating was applied to the beef surface and serves as an effective barrier against the growth of pathogenic bacteria, thereby preserving the freshness and tenderness of the beef. The finding from this work is expected to open up a new way in active nano hydrogel coating for food preservation.


Asunto(s)
Quitosano , Hidrogeles , Quitosano/química , Quitosano/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Bovinos , Isoflavonas/química , Isoflavonas/farmacología , Conservación de Alimentos/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Carne Roja , Antibacterianos/farmacología , Antibacterianos/química
4.
Diabetes Metab J ; 48(3): 354-372, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38650100

RESUMEN

Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.


Asunto(s)
Péptido 1 Similar al Glucagón , Metabolismo de los Lípidos , Obesidad , Humanos , Péptido 1 Similar al Glucagón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Tejido Adiposo/metabolismo
5.
Nano Lett ; 24(17): 5371-5378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647348

RESUMEN

Artificial synapses and bionic neurons offer great potential in highly efficient computing paradigms. However, complex requirements for specific electronic devices in neuromorphic computing have made memristors face the challenge of process simplification and universality. Herein, reconfigurable Ag/HfO2/NiO/Pt memristors are designed for feasible switching between volatile and nonvolatile modes by compliance current controlled Ag filaments, which enables stable and reconfigurable synaptic and neuronal functions. A neuromorphic computing system effectively replicates the biological synaptic weight alteration and continuously accomplishes excitation and reset of artificial neurons, which consist of bionic synapses and artificial neurons based on isotype Ag/HfO2/NiO/Pt memristors. This reconfigurable electrical performance of the Ag/HfO2/NiO/Pt memristors takes advantage of simplified hardware design and delivers integrated circuits with high density, which exhibits great potency for future neural networks.

6.
Anal Chem ; 96(12): 4825-4834, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364099

RESUMEN

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas del Metal/química , Inmunoensayo , Colorimetría , Oro/química , Vanadio , Anticuerpos , Límite de Detección
7.
Artículo en Inglés | MEDLINE | ID: mdl-38265909

RESUMEN

Sensory information transmitted to the brain activates neurons to create a series of coping behaviors. Understanding the mechanisms of neural computation and reverse engineering the brain to build intelligent machines requires establishing a robust relationship between stimuli and neural responses. Neural decoding aims to reconstruct the original stimuli that trigger neural responses. With the recent upsurge of artificial intelligence, neural decoding provides an insightful perspective for designing novel algorithms of brain-machine interface. For humans, vision is the dominant contributor to the interaction between the external environment and the brain. In this study, utilizing the retinal neural spike data collected over multi trials with visual stimuli of two movies with different levels of scene complexity, we used a neural network decoder to quantify the decoded visual stimuli with six different metrics for image quality assessment establishing comprehensive inspection of decoding. With the detailed and systematical study of the effect and single and multiple trials of data, different noise in spikes, and blurred images, our results provide an in-depth investigation of decoding dynamical visual scenes using retinal spikes. These results provide insights into the neural coding of visual scenes and services as a guideline for designing next-generation decoding algorithms of neuroprosthesis and other devices of brain-machine interface.

8.
Endocrine ; 84(1): 1-15, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227168

RESUMEN

Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Eje Cerebro-Intestino , Encéfalo/metabolismo , Homeostasis
9.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240634

RESUMEN

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

10.
Mikrochim Acta ; 191(1): 50, 2023 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141100

RESUMEN

A sensitive immunochromatographic assay (ICA) using time-resolved fluorescence microspheres (TRFMs) coupled with an indirect-labeling mode was developed for simultaneously determining 22 kinds of ß-lactams in milk samples. The TRFMs labeled anti-receptor monoclonal antibodies (mAbs) conjugated to penicillin-binding proteins (PBPs) as ternary TRFMs-mAb-PBPs (TMP) nanoscaffolds provide excellent solubility, brightness, and stability. Thanks to the fact that they not only fully expose the binding sites of PBPs, thereby enhancing the biological affinity of PBPs towards the target, but also generated superb fluorescence signals, the versatile TMP manifested unique possibilities as efficient probes for ICA with remarkable enhancement in sensitivity in ß-lactams screening. The results showed that the standard curves of the 22 varying ß-lactams displayed linearity in their respective concentration ranges (R2 > 0.98), with the cutoff values of 1-100 ng/mL. The constructed TMP-ICA was successfully applied to the analysis of real milk, with consistent results compared with liquid chromatography-tandem mass spectrometry (LC-MS), providing an effective method for sensing ß-lactams in food matrices.


Asunto(s)
Penicilinas , beta-Lactamas , Animales , beta-Lactamas/análisis , Penicilinas/análisis , Proteínas de Unión a las Penicilinas , Leche/química , Microesferas , Anticuerpos/análisis , Inmunoensayo
11.
Mikrochim Acta ; 191(1): 42, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114730

RESUMEN

To avoid false negative results due to the low cross-reactivity rate (CR) in rapid immunoassay, a group-specific antibody with homogeneous CR toward target compounds is needed for accuracy. In this study, tylosin (TYL) and tilmicosin (TM) were selected as model molecules. Firstly, two-dimensional similarity, electrostatic potential energy, spatial conformation and charge distribution of the haptens TYL-CMO, TYL-6-ACA, TYL-4-APA, TYL-CHO and DES-CMO and target compounds of TYL and TM were obtained using Gaussian 09W and Discovery Studio. The optimal hapten was DES-CMO because it is the most similar to TYL and TM. Subsequently, the mAb 14D5 cell line was obtained with IC50 values of 1.59 and 1.72 ng/mL for TYL and TM, respectively, and a CR of 92.44%. Finally, amorphous carbon nanoparticles (ACNPs) were conjugated with mAb 14D5 to develop an accurate lateral flow immunoassay (LFA) for detection of TYL and TM by the reflectance value under natural light. The recoveries of TYL and TM ranged from 77.18 to 112.04% with coefficient of variation < 13.43%. The cut-off value in milk samples was 8 ng/mL, and the limits of detection were 11.44, 15.96, 22.29 and 25.53 µg/kg for chicken muscle, bovine muscle, porcine muscle and porcine liver samples, respectively, and the results being consistent with HPLC-UV. The results suggest that the developed LFA is accurate and potentially useful for on-site screening of TYL and TM in milk and animal tissue samples.


Asunto(s)
Anticuerpos Monoclonales , Tilosina , Animales , Bovinos , Porcinos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoensayo , Haptenos
12.
Front Pharmacol ; 14: 1269233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829301

RESUMEN

Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/ß-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.

13.
Anal Chem ; 95(45): 16585-16592, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37774142

RESUMEN

Nanomaterials-based immunochromatographic assays (ICAs) are of great significance in point-of-care testing (POCT), yet it remains challenging to explore low background platforms and high chromogenic intensity probes to improve detection performance. Herein, we reported a low interference and high signal-to-noise ratio fluorescent ICA platform based on ultrabright persistent luminescent nanoparticles (PLNPs) Zn2GeO4: Mn, which could produce intense photoluminescence at 254 nm excitation to reduce background interference from ICA substrates and samples. The prepared immunosensor was successfully applied in T-2 toxin detection with a remarkable limit of detection of 0.025 ng/mL, which was 22-fold more sensitive compared with that of traditional gold nanoparticles. Ultimately, a portable 3D-printed detection device equipped with a smartphone analyzing application was fabricated for quantitative readout in POCT, achieving favorable recoveries in practical sample detection. This work provides a creative attempt for ultrabright PLNP-based low background ICA, and it also guarantees its feasibility in practical POCT.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos , Oro , Nanopartículas del Metal/química , Inmunoensayo/métodos , Colorantes , Límite de Detección
14.
Anal Chem ; 95(42): 15531-15539, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37753722

RESUMEN

Improving the sensitivity of immunochromatographic assays (ICAs) lies in the signal strength and probe activity of the labeled tracers, and the color properties and structure of the labeled tracers are key factors affecting the biological activity. In this study, cerium vanadate (CeVO4) of different sizes and shapes (230, 1058, and 710 nm) was synthesized to investigate its impact on the performance of ICA for T-2 detection. The prepared CeVO4 possessed outstanding stability, a large specific surface area, superior biocompatibility, and high compatibility with T-2 mAb (affinity constant was 3.14 × 108 M-1). As labeling probes for competitive ICA, the results showed that 1058 nm of CeVO4 as labels exhibited the best detection performance, with a limit of detection (LOD) of 0.079 ng/mL, which was substantially 19-fold less than the average of gold nanoparticle ICA. Additionally, CeVO4-ICA was effectively used to detect T-2 toxin, and the recovery rate for spiking corn and oatmeal samples was determined to be 81.27-115.44% (relative standard deviation <9.16%). The above information demonstrates the efficiency and applicability of CeVO4-ICA as a technique for quick and thorough identification of T-2 toxin residues in food.

15.
Front Pediatr ; 11: 1134923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252042

RESUMEN

Background: As more than 500,000 neonates participate in newborn congenital hypothyroidism (CH) screening in Guangxi Zhuang Autonomous Region each year, the overall number of false-positive (FP) cases has increased. We aim to assess the parental stress in parents of neonates with FP CH results in Guangxi, find out the influence factors related to demographics, and provide the basis for personalized health education. Methods: The parents of neonates with FP CH results were invited to participate in the FP group, and the parents of neonates with all negative results were invited to participate in the control group. The parents completed a questionnaire on demographics, knowledge of CH, and the parental stress index (PSI) in the hospital for the first time. The follow-up visits for PSI were conducted 3, 6, and 12 months afterward through telephone and online. Results: A total of 258 and 1,040 parents participated in the FP and control groups, respectively. The parents in the FP group had better knowledge of CH and higher PSI scores than the parents in the control group. The result of logistic regression showed that the major influence factors related to the knowledge of CH were FP experience and source of knowledge. The parents in the FP group who were well-informed during the recall phone call had lower PSI scores than the other parents. The parents in the FP group showed decreasing PSI scores gradually in follow-up visits. Conclusion: The results suggested that FP screening results may affect parental stress and parent-child relationship. FP results increased the stress on the parents and increased their knowledge of CH passively.

16.
Anal Chem ; 95(24): 9237-9243, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37232263

RESUMEN

Nanozymes have drawn much attention as an enzyme mimetic with low cost and stability in enhancing analytical performance. Herein, a peroxidase-mimicking nanozyme-improved enzyme-linked immunosorbent assay (ELISA) was developed employing the bimetallic PdRu nanozyme to replace the natural enzymes as a catalytic carrier for the sensing of Escherichia coli O157:H7 (E. coli O157:H7). The PdRu nanozyme displayed ultrahigh catalytic activity, possessing a catalytic rate that was 5-fold higher than horseradish peroxidase (HRP). In addition, PdRu exhibited great biological affinity with antibody (affinity constant was about 6.75 × 1012 M) and high stability. All those advantages ensure the successful establishment and the construction of a novel colorimetric biosensor for E. coli O157:H7 detection. PdRu-based ELISA not only achieved an ultrasensitive detection sensitivity (8.7 × 102 CFU/mL) by approximately 288-fold as compared to the traditional HRP-based ELISA and also possessed satisfactory specificity and reproducibility (relative standard deviation (RSD) < 10%). Furthermore, the feasibility of PdRu-ELISA was further evaluated by detecting E. coli O157:H7 in actual samples with satisfactory recoveries, indicating its potential for applications in bioassays and clinical diagnostics.


Asunto(s)
Escherichia coli O157 , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antibacterianos , Peroxidasa de Rábano Silvestre
17.
Anal Chem ; 95(12): 5275-5284, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36898021

RESUMEN

Owing to its high throughput, simplicity, and rapidity, enzyme-linked immunosorbent assay (ELISA) has attracted much attention in the field of immunoassays. However, the traditional ELISA usually affords a single signal readout and the labeling ability of the enzyme used is poor, resulting in low accuracy and a limited detection range. Herein, a vanadium nanospheres (VNSs)-mediated competitive ratio nanozymes-linked immunosorbent assay (VNSs-RNLISA) was created for the sensitive detection of the T-2 toxin (T-2). As the key to the biosensor, the VNSs with superoxide dismutase-like and peroxidase-like dual-enzyme mimetic activities were synthesized by a one-step hydrothermal method, which oxidized 1,1-diphenyl-2-picryl-hydrazyl fading and catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) color development. Therefore, T-2 could not only be qualitatively measured with the naked eye but also be quantitatively evaluated by monitoring the ratio of absorbance at 450 and 517 nm wavelengths. Moreover, the characterization of a VNSs-labeled antibody probe showed strong dual-enzymatic activity, excellent stability, and high affinity with T-2 [the affinity constant (ka) was approximately 1.36 × 108 M-1], which can significantly improve the detection sensitivity. The limit of detection of VNSs-RNLISA was 0.021 ng/mL, which was approximately 27-fold more sensitive than the single signal nanozymes-linked immunosorbent assay (0.561 ng/mL). Besides, the change in the ratio of absorbance (Δ450/Δ517) decreased linearly in a range of 0.22-13.17 ng/mL, outperforming the detection range of a single-mode nano-enzyme-linked immunosorbent assay using TMB by a factor of 1.6 times. Furthermore, the VNSs-RNLISA was successfully used to identify T-2 in maize and oat samples, with recoveries ranging from 84.216 to 125.371%. Overall, this tactic offered a promising platform for the quick detection of T-2 in food and might broaden the application range of the enzyme-linked immunosorbent assay.


Asunto(s)
Técnicas Biosensibles , Nanosferas , Toxina T-2 , Inmunoensayo/métodos , Vanadio , Inmunoadsorbentes , Límite de Detección
18.
Food Chem ; 418: 135948, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36944309

RESUMEN

Designing efficient and sensitive methods for the detection of nitrofurantoin (NFT) residues is of great importance for food safety and environmental protection. Herein, a composite with cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube (N/Co@CNTs@CC-II) was synthesized by in-situ growth and sublimation-gas phase transformation strategy and used to establish an ultrasensitive electrochemical sensor for NFT determination. The N/Co@CNTs@CC-II sensor exhibits uniform N doping, fine hollow structure, and abundant active metal sites, which lays a solid foundation for the ultra-sensitive detection of NFT. Benefiting from these advantages, the N/Co@CNTs@CC-II exhibits excellent sensitivity (8.19 µA µM-1 cm-2) and low detection limit (18.41 nM) for NFT detection. The practical feasibility of N/Co@CNTs@CC-II was also demonstrated by the determination of NFT in milk and tap water samples. This study may open up new opportunities for the application of N-doped carbon nanotube materials encapsulating transition metals.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Cobalto/química , Nanotubos de Carbono/química , Nitrofurantoína , Nanopartículas del Metal
19.
Biosens Bioelectron ; 229: 115239, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965382

RESUMEN

Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.


Asunto(s)
Técnicas Biosensibles , Salmonella enteritidis , Reproducibilidad de los Resultados , Inmunoensayo/métodos , Anticuerpos , Límite de Detección
20.
J Hazard Mater ; 447: 130777, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36689901

RESUMEN

Developing electrode materials with excellent electrocatalytic properties for detecting pesticide residues plays a vital role in the safety of agricultural products and environmental applications. Herein, we designed a new electrochemical sensor on the basis of N-doped carbon hollow nanospheres modified with Sn/MoC Schottky junction (Sn/MoC@NC) for methyl parathion (MP) detection. The Sn/MoC@NC was prepared by self-assembled polymerization-anchoring strategy and high-temperature carbonization design. Sn/MoC Schottky junction and hollow nanosphere structure endow Sn/MoC@NC with a larger surface area, more active sites, and faster electron transfer, which is beneficial to enhancing its electrocatalytic performance. The structural characterizations and physicochemical properties of Sn/MoC@NC were explored through various microscopy, spectroscopic and electrochemical techniques. The experimental results confirmed that the calibration curve for current and MP concentration (0.05-10 µg/mL) was available under optimized conditions, and the sensitivity and detection limit were respectively determined to be 9.02 µA µM1 cm2 and 8.9 ng/mL. Furthermore, the constructed sensor displayed excellent selectivity, repeatability, and stability, which qualified it for use in detecting MP in grapes and tap water with satisfactory recovery. This work may provide some interesting prospects for constructing high-performance electrocatalysts for MP detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA