Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38593752

RESUMEN

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.


Asunto(s)
Clorofilidas , Indoles , Melaninas , Melanoma Experimental , Nanopartículas , Polímeros , Porfirinas , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Nanopartículas/química , Animales , Ratones , Melanoma Experimental/patología , Melanoma Experimental/terapia , Línea Celular Tumoral , Porfirinas/química , Porfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Fototerapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Terapia Fototérmica
2.
ACS Appl Bio Mater ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996391

RESUMEN

Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.

3.
Biomed Mater ; 18(6)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37652047

RESUMEN

The potential use of antioxidants for photodynamic therapy (PDT) is investigated in this study. PDT causes reactive oxygen species (ROS)-mediated cell death; on the contrary, antioxidants scavenge ROS. The use of a photosensitizer along with an antioxidant photosensitizer compensates for the loss of ROS due to the use of antioxidant, eventually leading to cell death. In this work, for PDT and photothermal therapy (PTT), we have combined the photosensitizer IR 792 perchlorate dye with the antioxidants alpha-tocopherol (A) andp-coumaric acid (C) encapsulated in a polymeric nanocarrier (AC IR NPs). We have reported the synthesis of AC IR NPs using poly lactic-co-glycolic acid (PLGA) by nanoprecipitation method. The size of the polymeric nanoparticles was found to be 80.4 ± 15.6 nm, with a spherical morphology observed by scanning electron microscopy and transmission electron microscopy. The synthesized AC IR NPs demonstrated good biocompatibility in fibroblast cell lines (L929). Furthermore, the efficacy assessment of the as prepared nanosystemin vitroon breast cancer cell lines (4T1) revealed a significant cell death of nearly 80%. This could be attributed to the ROS generation leading to oxidative stress and inhibition of metastasis. This study provides evidence that the combination of antioxidant drugs along with photosensitizers have the potential to be an effective therapy for treating triple negative breast cancer.


Asunto(s)
Fármacos Fotosensibilizantes , Neoplasias de la Mama Triple Negativas , Humanos , Glicoles , Antioxidantes , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fototerapia , Polímeros , Células MCF-7
4.
Diagnostics (Basel) ; 13(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37189483

RESUMEN

This paper reports the colorimetric analysis of cervical-cancer-affected clinical samples by the in situ formation of gold nanoparticles (AuNPs) formed with cervico-vaginal fluids collected from healthy and cancer-affected patients in a clinical setup, termed "C-ColAur". We evaluated the efficacy of the colorimetric technique against the clinical analysis (biopsy/Pap smear) and reported the sensitivity and specificity. We investigated if the aggregation coefficient and size of the nanoparticles responsible for the change in color of the AuNPs (formed with clinical samples) could also be used as a measure of detecting malignancy. We estimated the protein and lipid concentrations in the clinical samples and attempted to investigate if either of these components was solely responsible for the color change, enabling their colorimetric detection. We also propose a self-sampling device, CerviSelf, that could enable the rapid frequency of screening. We discuss two of the designs in detail and demonstrate the 3D-printed prototypes. These devices, in conjugation with the colorimetric technique C-ColAur, have the potential to be self-screening techniques, enabling women to undergo rapid and frequent screening in the comfort and privacy of their homes, allowing a chance at an early diagnosis and improved survival rates.

5.
ACS Macro Lett ; 12(2): 255-262, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723076

RESUMEN

With the advent of nucleosome/nucleotide intercalating drugs, DNA-based nanocarriers have recently gained impetus. However, most of the newly proposed DNA nanosystems are rather complex, thereby having low scalability and translatability. In this study, we propose a simple DNA nanomatrix core encapsulated within a chitosan shell, which is expected to enhance the encapsulation efficiency of intercalating drugs. This has been demonstrated using proflavine hemisulfate (PfHS), a model intercalating agent that shows improved ROS generation, among other anticancerous properties. The release of the drug from the nanomatrix is triggered by providing a heat trigger using IR-792 perchlorate, a known NIR photothermal sensitizer.


Asunto(s)
Doxorrubicina , Terapia Fototérmica , Sistemas de Liberación de Medicamentos , Tecnología , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA