RESUMEN
Human biomonitoring (HBM) data indicate that exposure to pyrethroids is widespread in Europe, with significantly higher exposure observed in children compared to adults. Epidemiological, toxicological, and mechanistic studies raise concerns for potential human health effects, particularly, behavioral effects such as attention deficit hyperactivity disorder (ADHD) in children at low levels of exposure. Based on an exposure-response function from a single European study and on available quality-assured and harmonized HBM data collected in France, Germany, Iceland, Switzerland, and Israel, a preliminary estimate of the environmental burden of disease for ADHD associated with pyrethroid exposure was made for individuals aged 0-19 years. The estimated annual number of prevalence-based disability-adjusted life years (DALYs) per million inhabitants were 27 DALYs for Israel, 21 DALYs for France, 12 DALYs for both Switzerland and Iceland, and 3 DALYs for Germany; while the annual ADHD cases per million inhabitants attributable to pyrethroids were 2189 for Israel, 1710 for France, 969 for Iceland, 944 for Switzerland, and 209 for Germany. Direct health costs related to ADHD ranged between 0.3 and 2.5 million EUR yearly per million inhabitants for the five countries. Additionally, a substantial number of ADHD cases, on average 18%, were associated with pyrethroid exposure. Yet, these figures should be interpreted with caution given the uncertainty of the estimation. A sensitivity analysis showed that by applying a different exposure-response function from outside the EU, the population attributable fraction decreased from an average of 18 to 7%. To ensure more robust disease burden estimates and adequate follow-up of policy measures, more HBM studies are needed, along with increased efforts to harmonize the design of epidemiological studies upfront to guarantee meta-analysis of exposure-response functions. This is particularly important for pyrethroids as evidence of potential adverse health effects is continuously emerging.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Monitoreo Biológico , Exposición a Riesgos Ambientales , Insecticidas , Piretrinas , Humanos , Adolescente , Niño , Europa (Continente)/epidemiología , Preescolar , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Adulto Joven , Lactante , Exposición a Riesgos Ambientales/efectos adversos , Recién Nacido , Masculino , Femenino , Adulto , Años de Vida Ajustados por Discapacidad , Monitoreo del AmbienteRESUMEN
Once an external factor has been deemed likely to influence human health and a dose response function is available, an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose-response functions with that relying on toxicological data; 3) clarification of terminology of health impact assessment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related to the simultaneous consideration of several factors, in particular when they are causally linked.
Asunto(s)
Proyectos de Investigación , Medición de Riesgo , Medición de Riesgo/métodosRESUMEN
One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
Asunto(s)
Monitoreo Biológico , Mercurio , Humanos , Monitoreo del Ambiente/métodos , Políticas , Medición de RiesgoRESUMEN
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.
Asunto(s)
Arsénico , Contaminantes Ambientales , Fluorocarburos , Plaguicidas , Adulto Joven , Humanos , Niño , Adolescente , Monitoreo Biológico , Contaminantes Ambientales/análisis , Cadmio/análisis , Arsénico/análisis , Plaguicidas/análisis , Fluorocarburos/análisis , Biomarcadores , AcrilamidasRESUMEN
The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 µg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 µg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.
Asunto(s)
Arsénico , Arsenicales , Adolescente , Humanos , Arsénico/análisis , Arsenicales/orina , Europa (Continente) , Francia , Exposición a Riesgos Ambientales/análisisRESUMEN
One of the major goals of the European Human Biomonitoring Initiative (HBM4EU) was to bridge the gap between science and policy by consulting both policy makers and national scientists and generating evidence of the actual exposure of residents to chemicals and whether that exposure would be suggest a potential health risk. Residents' perspectives on chemical exposure and risk were also investigated. HBM4EU's research was designed to answer specific short-term and long-term policy questions at national and European levels, and for its results to directly support regulatory action on chemicals. A strategy was established to prioritise chemicals for analysis in human matrices, with a total of 18 substances/substance groups chosen to be investigated throughout the five-and a -half-year project. HBM4EU produced new evidence of human exposure levels, developed reference values for exposure, investigated determinants of exposure and derived health-based guidance values for those substances. In addition, HBM4EU promoted the use of human biomonitoring data in chemical risk assessment and developed innovative tools and methods linking chemicals to possible health impacts, such as effect biomarkers. Furthermore, HBM4EU advanced understand of effects from combined exposures and methods to identify emerging chemicals. With the aim of supporting policy implementation, science-to-policy workshops were organised, providing opportunities for joint reflection and dialogue on research results. I, and indicators were developed to assess temporal and spatial patterns in the exposure of European population. A sustainable human biomonitoring monitoring framework, producing comparable quality assured data would allow: the evaluation of time trends; the exploration of spatial trends: the evaluation of the influence of socio-economic conditions on chemical exposure. Therefore, such a framework should be included in the European Chemicals' Strategy for Sustainability and the data would support the Zero Pollution Action Plan.
Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Monitoreo del Ambiente/métodos , Monitoreo Biológico , Políticas , BiomarcadoresRESUMEN
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
Asunto(s)
Ácidos Ftálicos , Masculino , Niño , Femenino , Adolescente , Humanos , Políticas , Monitoreo Biológico , Ácidos CarboxílicosRESUMEN
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
RESUMEN
Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 µg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 µg/L urine for Gly and between 0.21 and 0.38 µg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources.
RESUMEN
Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 µg/L). The 95th percentiles ranged between 0.18 and 1.03 µg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed.
RESUMEN
Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.
Asunto(s)
Monitoreo Biológico , Adulto , Niño , Humanos , Medición de Riesgo/métodosRESUMEN
To improve our understanding of internal exposure to multiple chemicals, the concept exposure load (EL) was used on human biomonitoring (HBM) data of the 4th FLEHS (Flemish Environment and Health Study; 2016-2020). The investigated chemicals were per- and polyfluoroalkyl substances (PFASs), bisphenols, phthalates and alternative plasticizers, flame retardants, pesticides, toxic metals, organochlorine compounds and polycyclic aromatic hydrocarbons (PAHs). The EL calculates "the number of chemicals to which individuals are internally exposed above a predefined threshold". In this study, the 50th and 90th percentile of each of the 45 chemicals were applied as thresholds for the EL calculations for 387 study participants. Around 20% of the participants were exposed to >27 chemicals above the P50 and to >6 chemicals above the P90 level. This shows that participants can be internally exposed to multiple chemicals in relatively high concentrations. When the chemical composition of the EL was considered, the variability between individuals was driven by some chemicals more than others. The variability of the chemical profiles at high exposure loads (EL-P90) was somewhat dominated by e.g. organochlorine chemicals, PFASs, phthalates, PAHs, organophosphate flame retardants, bisphenols (A & F), pesticides, metals, but to a lesser extent by brominated flame retardants, the organophosphorus flame retardants TCIPP & TBOEP, naphthalene and benzene, bisphenols S, B & Z, the pesticide 2,4-D, the phthalate DEP and alternative plasticizer DINCH. Associations between the EL and exposure determinants suggested determinants formerly associated with fat soluble chemicals, PFASs, bisphenols, and PAHs. This information adds to the knowledge needed to reduce the exposure by policymakers and citizens. However, a more in depth study is necessary to explore in detail the causes for the higher EL in some individuals. Some limitations in the EL concept are that a binary number is used for exposure above or below a threshold, while toxicity and residence time in the body are not accounted for and the sequence of exposure in different life stages is unknown. However, EL is a first useful step to get more insight in multiple chemical exposure in higher exposed subpopulations (relative to the rest of the sampled population).
Asunto(s)
Retardadores de Llama , Hidrocarburos Clorados , Monitoreo Biológico , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Humanos , Organofosfatos , PlastificantesRESUMEN
Cadmium (Cd) is a toxic heavy metal widespread in the environment leading to human exposure in particular through diet (when smoking is excluded), as documented by recent human biomonitoring (HBM) surveys. Exposure to Cd at environmental low-exposure levels has been associated with adverse effects such as renal toxicity and more recently bone effects. The implication, even if limited, of Cd in the etiology of osteoporosis can be of high importance at the population level given the significant prevalence of osteoporosis and the ubiquitous and life-long exposure to Cd. Therefore, the osteoporosis cases attributable to Cd exposure was estimated in three European countries (Belgium, France and Spain), based on measured urinary Cd levels from HBM studies conducted in these countries. The targeted population was women over 55 years old, for which risk levels associated with environmental Cd exposure were available. Around 23% of the cases were attributed to Cd exposure. Moreover, in a prospective simulation approach of lifelong urinary Cd concentrations assuming different intakes scenarios, future osteoporosis attributable cases were calculated, based on urinary Cd levels measured in women aged under 55. Between 6 and 34% of the considered populations under 55 years were at risk for osteoporosis. Finally, the costs associated to the burden of osteoporosis-related fractures attributable to Cd for each country targeted in this paper were assessed, standing for a major contributing role of Cd exposure in the overall social costs related to osteoporosis. Absolute costs ranged between 0.12 (low estimate in Belgium) and 2.6 billion Euros (high estimate in France) in women currently over 55 years old and at risk for fractures. Our results support the importance of reducing exposure of the general population to Cd.
Asunto(s)
Cadmio , Osteoporosis , Bélgica/epidemiología , Exposición a Riesgos Ambientales/análisis , Femenino , Francia/epidemiología , Humanos , Persona de Mediana Edad , Osteoporosis/epidemiología , Estudios Prospectivos , España/epidemiologíaRESUMEN
Because of their dirt-, water- and oil-repelling properties, per- and polyfluoroalkyl substances (PFASs) are frequently used in a broad variety of consumer products. They have been detected in human samples worldwide. In Flanders, Belgium, the Flemish Environment and Health Studies (FLEHS) measured the levels of five PFAS biomarkers in four different age groups of the Flemish population and identified determinants of variability in exposure. Cord plasma or peripheric serum samples and questionnaire data were available for 220 mother-newborn pairs (2008-2009), 269 mother-newborn pairs (2013-2014), 199 adolescents (14-15 years old, 2010), 201 adults (20-40 years old, 2008-2009) and 205 adults (50-65 years old, 2014). Measured levels of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) in Flanders are in the middle or low range compared to concentrations reported in other Western countries. Levels of perfluorobutanesulfonic acid (PFBS) were below the quantification limit in 98%-100% of the samples. Despite decreasing levels in time for PFOS and PFOA, 77% of the adults (2014) had serum levels exceeding HBM-I values of 5⯵g/L for PFOS and 2⯵g/L for PFOA. Beside age, sex, fish consumption, parity and breastfeeding, the multiple regression models identified additionally consumption of offal and locally grown food, and use of cosmetics as possible exposures and menstruation as a possible route of elimination. Better knowledge on determinants of exposure is essential to lower PFASs exposure.
Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/sangre , Adolescente , Adulto , Anciano , Ácidos Alcanesulfónicos/sangre , Bélgica , Lactancia Materna , Caprilatos/sangre , Salud Ambiental , Femenino , Fluorocarburos/sangre , Alimentos , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Madres , Paridad , Embarazo , Ácidos Sulfónicos/sangre , Encuestas y Cuestionarios , Tiempo , Adulto JovenRESUMEN
BACKGROUND: Recent lead (Pb) exposure reduction strategies enabled to lower children's blood lead levels (B-Pb) worldwide. This study reports the estimated intelligence gain and social cost savings attributable to recent exposure reduction based on reported B-Pb levels observed in adolescents sampled within the framework of the Flemish Environment and Health Studies (FLEHS, Belgium), i.e. in 2003-2004 (FLEHSI), in 2008-2009 (FLEHSII), and in 2013-2014 (FLEHSIII). METHODS: Intelligence Quotient (IQ) loss per 100,000 individuals - attributable to B-Pb above 20 µg/L - was estimated based on widely accepted dose response functions between children's B-Pb and IQ (- 1.88 IQ points for a duplication in B-Pb from 20 µg/L onwards; 95% Confidence Interval (CI): - 1.16;-2.59) and B-Pb exposure distribution parameters of FLEHS studies. The results were translated to the Flemish population of 15-year-olds. Given a 3-year time gap between subsequent sampling periods, the exposure distribution of each study was assumed 3 years prior to the study as well. Economic impact was estimated based on expected decrease in lifetime earnings ( 19,464 per decreasing IQ point in 2018). RESULTS: The percentage of the adolescent population exceeding a B-Pb of 20 µg/L decreased from 57% (FLEHSI) to 23% (FLEHSII), and even further to 2.5% (FLEHSIII). The estimated IQ loss per 100,000 individuals was 94,280 (95% CI: 58,427-130,138) in FLEHSI, 14,993 (95% CI: 9289-20,695) in FLEHSII, and 976 (95% CI: 604-1347) in FLEHSIII. This translates into a total loss of 378,962 (95%CI: 234,840-523,091) IQ points within the Flemish population of 15-year-olds between 2000 and 2014. Assuming that current exposure levels do not reincrease, the expected IQ loss during the subsequent period of 15 years is estimated to be maximally 10,275 (95%CI: 6363-14,182) points. CONCLUSIONS: 7176 (95%CI: 4447-9905) million of social cost savings were achieved by Pb reduction strategies in Flanders over 15 years. If current exposure levels further reduce to B-Pb below 20 µg/L for the whole population, social cost savings may increase up to 7376 (95%CI: 4571-10,181) million . Given the relatively low lead contamination in Flanders, the global impact of ongoing reduction strategies is expected to be tremendous.
Asunto(s)
Exposición a Riesgos Ambientales/prevención & control , Contaminantes Ambientales/sangre , Contaminación Ambiental/prevención & control , Pruebas de Inteligencia/estadística & datos numéricos , Inteligencia , Plomo/sangre , Adolescente , Bélgica , Femenino , Humanos , Inteligencia/efectos de los fármacos , MasculinoRESUMEN
Human biomonitoring (HBM) is an important tool to survey the internal exposure of humans which represents the real life chemical body burden to chemicals and/or their metabolites. It results from total exposure to chemical substances from different sources and via different routes. These substances may be regulated under different legislative frameworks on chemicals (e.g., environmental, occupational, food safety etc). In occupational health, HBM has long traditions to control the exposures at workplaces. By providing accurate data on internal exposure, HBM data can improve human health risk assessment (RA) for both the general population and workers. Although the past few years have shown good examples on the use of HBM in the RA of chemicals, there is still quite some work to be done to improve its use in a regulatory RA. Under the scope of the European Human Biomonitoring Initiative (project HBM4EU, 2017-2021), the current study reviews the state-of-the-art of HBM use in chemicals RA with a special focus in Europe, and attempts to identify hurdles and challenges faced by regulators. To gather information on the use of HBM, including the availability of guidance on how to use it in RA, the RA schemes applied by different European or international organizations were analysed. Examples of such use were identified for a few selected groups of chemicals of concern for human health. In addition, we present the results of a survey, aimed at collecting information from national regulatory risk assessors on their day-to-day RA practices, the use of HBM data, and the obstacles and challenges related to their use. The results evidenced and explained some of the current obstacles of using HBM data in RA. These included the lack of HBM guidance values or biomonitoring equivalents (BEs), limited toxicokinetic information to support the interpretation of HBM data and, in the occupational health and safety (OSH) field, the lack of legal enforcement. Therefore, to support the integration of HBM in regulatory RA, we recommend, on one hand, the elaboration of a EU level guidance on the use of HBM in RA and, on the other hand, the continuation of research efforts to integrate HBM with new RA approaches using in vitro/in silico data and Adverse Outcome Pathways (AOPs).
Asunto(s)
Monitoreo Biológico , Predicción , Medición de Riesgo/tendencias , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/toxicidad , Europa (Continente)/epidemiología , Humanos , Medición de Riesgo/métodos , Organización Mundial de la SaludRESUMEN
Research on the environment, health, and well-being nexus (EHWB) is shifting from a silo toward a systemic approach that includes the socio-economic context. To disentangle further the complex interplay between the socio-exposome and internal chemical exposure, we performed a meta-analysis of human biomonitoring (HBM) studies with internal exposure data on per-and polyfluoroalkyl substances (PFASs) and detailed information on risk factors, including descriptors of socio-economic status (SES) of the study population. PFASs are persistent in nature, and some have endocrine-disrupting properties. Individual studies have shown that HBM biomarker concentrations of PFASs generally increase with SES indicators, e.g., for income. Based on a meta-analysis (five studies) of the associations between PFASs and SES indicators, the magnitude of the association could be estimated. For the SES indicator income, changes in income were expressed by a factor change, which was corrected by the Gini coefficient to take into account the differences in income categories between studies, and the income range between countries. For the SES indicator education, we had to conclude that descriptors (Asunto(s)
Exposición a Riesgos Ambientales
, Contaminantes Ambientales/efectos adversos
, Fluorocarburos/efectos adversos
, Estado de Salud
, Clase Social
, Monitoreo del Ambiente
, Humanos
, Factores de Riesgo
RESUMEN
The European Union's 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience. Human biomonitoring (HBM) indicators at the European Union (EU) level are unfortunately lacking. Within the Horizon2020 European Human Biomonitoring project HBM4EU, an approach to develop European HBM indicators was worked out. To learn from and ensure interoperability with other European indicators, 15 experts from the HBM4EU project (German Umweltbundesamt (UBA), Flemish research institute VITO, University of Antwerp, European Environment Agency (EEA)), and the World Health Organization (WHO), European Core Health Indicator initiative (ECHI), Eurostat, Swiss ETH Zurich and the Czech environmental institute CENIA, and contributed to a workshop, held in June 2017 at the EEA in Copenhagen. First, selection criteria were defined to evaluate when and if results of internal chemical exposure measured by HBM, need to be translated into a European HBM-based indicator. Two main aspects are the HBM indicator's relevance for policy, society, health, and the quality of the biomarker data (availability, comparability, ease of interpretation). Secondly, an approach for the calculation of the indicators was designed. Two types of indicators were proposed: 'sum indicators of internal exposure' derived directly from HBM biomarker concentrations and 'indicators for health risk', comparing HBM concentrations to HBM health-based guidance values (HBM HBGVs). In the latter case, both the percentage of the studied population exceeding the HBM HBGVs (PE) and the extent of exceedance (EE), calculated as the population's exposure level divided by the HBM HBGV, can be calculated. These indicators were applied to two examples of hazardous chemicals: bisphenol A (BPA) and per- and polyfluoroalkyl substances (PFASs), which both have high policy and societal relevance and for which high quality published data were available (DEMOCOPHES, Swedish monitoring campaign). European HBM indicators help to summarize internal exposure to chemical substances among the European population and communicate to what degree environmental policies are successful in keeping internal exposures sufficiently low. The main aim of HBM indicators is to allow follow-up of chemical safety in Europe.
Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Política Ambiental , Política de Salud , Adolescente , Adulto , Niño , Europa (Continente) , Unión Europea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Exposición por Inhalación/estadística & datos numéricos , Níquel/análisis , Europa (Continente) , Humanos , Modelos TeóricosRESUMEN
BACKGROUND: Environmental health effects vary considerably with regard to their severity, type of disease, and duration. Integrated measures of population health, such as environmental burden of disease (EBD), are useful for setting priorities in environmental health policies and research. This review is a summary of the full Environmental Burden of Disease in European countries (EBoDE) project report. OBJECTIVES: The EBoDE project was set up to provide assessments for nine environmental risk factors relevant in selected European countries (Belgium, Finland, France, Germany, Italy, and the Netherlands). METHODS: Disability-adjusted life years (DALYs) were estimated for benzene, dioxins, secondhand smoke, formaldehyde, lead, traffic noise, ozone, particulate matter (PM2.5), and radon, using primarily World Health Organization data on burden of disease, (inter)national exposure data, and epidemiological or toxicological risk estimates. Results are presented here without discounting or age-weighting. RESULTS: About 3-7% of the annual burden of disease in the participating countries is associated with the included environmental risk factors. Airborne particulate matter (diameter ≤ 2.5 µm; PM2.5) is the leading risk factor associated with 6,000-10,000 DALYs/year and 1 million people. Secondhand smoke, traffic noise (including road, rail, and air traffic noise), and radon had overlapping estimate ranges (600-1,200 DALYs/million people). Some of the EBD estimates, especially for dioxins and formaldehyde, contain substantial uncertainties that could be only partly quantified. However, overall ranking of the estimates seems relatively robust. CONCLUSIONS: With current methods and data, environmental burden of disease estimates support meaningful policy evaluation and resource allocation, including identification of susceptible groups and targets for efficient exposure reduction. International exposure monitoring standards would enhance data quality and improve comparability.