Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 12(1): 3956, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172741

RESUMEN

Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.


Asunto(s)
Domesticación , Genoma de Planta/genética , Prunus armeniaca/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Frutas/clasificación , Frutas/genética , Frutas/crecimiento & desarrollo , Flujo Génico , Variación Genética , Estadios del Ciclo de Vida/genética , Metagenómica , Fenotipo , Filogenia , Prunus armeniaca/clasificación , Prunus armeniaca/crecimiento & desarrollo , Selección Genética
2.
J Plant Physiol ; 171(16): 1533-40, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25128785

RESUMEN

Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation.


Asunto(s)
Proteínas Fúngicas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nicotiana/genética , Retroelementos , ADN sin Sentido/genética , ADN sin Sentido/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retroelementos/genética , Transducción de Señal , Nicotiana/metabolismo
3.
PLoS One ; 6(7): e21889, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21789191

RESUMEN

The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lipasa/metabolismo , Factor 1 de Ribosilacion-ADP/química , Biocatálisis , Factores de Intercambio de Guanina Nucleótido/química , Células HeLa , Humanos , Inmunoprecipitación , Lipasa/química , Lípidos , Microscopía Inmunoelectrónica , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos
4.
Mol Genet Genomics ; 282(4): 329-50, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19669794

RESUMEN

The Sec7 domain ADP-ribosylation factor (Arf) guanine nucleotide exchange factors (GEFs) are found in all eukaryotes, and are involved in membrane remodeling processes throughout the cell. This review is focused on members of the GBF/Gea and BIG/Sec7 subfamilies of Arf GEFs, all of which use the class I Arf proteins (Arf1-3) as substrates, and play a fundamental role in trafficking in the endoplasmic reticulum (ER)-Golgi and endosomal membrane systems. Members of the GBF/Gea and BIG/Sec7 subfamilies are large proteins on the order of 200 kDa, and they possess multiple homology domains. Phylogenetic analyses indicate that both of these subfamilies of Arf GEFs have members in at least five out of the six eukaryotic supergroups, and hence were likely present very early in eukaryotic evolution. The homology domains of the large Arf1 GEFs play important functional roles, and are involved in interactions with numerous protein partners. The large Arf1 GEFs have been implicated in several human diseases. They are crucial host factors for the replication of several viral pathogens, including poliovirus, coxsackievirus, mouse hepatitis coronavirus, and hepatitis C virus. Mutations in the BIG2 Arf1 GEF have been linked to autosomal recessive periventricular heterotopia, a disorder of neuronal migration that leads to severe malformation of the cerebral cortex. Understanding the roles of the Arf1 GEFs in membrane dynamics is crucial to a full understanding of trafficking in the secretory and endosomal pathways, which in turn will provide essential insights into human diseases that arise from misregulation of these pathways.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Membrana Celular/metabolismo , Enfermedad/etiología , Evolución Molecular , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico/genética , Enfermedad/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Homología de Secuencia de Aminoácido
5.
Gene ; 396(2): 248-56, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17490833

RESUMEN

Mariner-like elements (MLEs) are class-II transposable elements that move within the genome of their hosts by means of a DNA-mediated "cut and paste" mechanism. MLEs have been identified in several organisms, from most of the phyla. Nevertheless, only a few of the sequences characterized contain an intact open reading frame. Investigation of the genome of a coastal crab, Pachygrapsus marmoratus, has identified nine Pacmmar elements, two of which have an open reading frame encoding a putatively functional transposase. Nucleic acid analyses and comparison with the previous data showed that the GC contents of MLEs derived from coastal organisms such as P. marmoratus are significantly higher than those of terrestrial MLEs and significantly lower than those of hydrothermal ones. Furthermore, molecular phylogeny analyses have shown that Pacmmar elements constitute a new lineage of the irritans subfamily within the mariner family.


Asunto(s)
Braquiuros/genética , Elementos Transponibles de ADN/genética , Secuencia de Aminoácidos , Animales , Composición de Base , Secuencia de Bases , Clonación Molecular , Biología Computacional/métodos , ADN/metabolismo , Datos de Secuencia Molecular , Señales de Localización Nuclear , Sistemas de Lectura Abierta , Filogenia , Programas Informáticos , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA