Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Chemosphere ; : 142786, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977251

RESUMEN

Floating treatment wetlands (FTWs) are artificial platforms that allow aquatic emergent plants to grow in water. Aquatic macrophytes and microorganisms attached to plant roots contribute to the remediation of the contaminated water through physicochemical and biological processes. The pollutant removal treatment performance is affected by various factors, including the plant species. In this study, several plant species, i.e. Canna generalis, Phragmites australis, Pennisetum purpureum, Cyperus alternifolius rottb, Kyllinga brevifolia rottb, and Cyperus ordoratus were investigated for their potential to clean-up water from the Hang Bang canal in Ho Chi Minh City (Vietnam). Canna generalis, Phragmites australis, and Cyperus alternifolius were found to be suitable for FTWs with the highest performance compared to that of other plant species investigated. The organic and nitrogen removal rates amounted to 48 - 70 g COD m-3 d-1 and 0.7 - 1.2 g N m-3 d-1, respectively, whereas the reduction of pathogens was around 1.86 - 3.00 log. Furthermore, FTW systems bring other benefits such as improving ecosystem functioning and biodiversity, producing value-added products from plant biomass, as well as attracting the attention of communities, thus increasing social acceptance of environmental technology interventions.

2.
Sci Total Environ ; 946: 174253, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936713

RESUMEN

The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.

3.
Environ Res ; 252(Pt 4): 119143, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38751000

RESUMEN

In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.


Asunto(s)
Acetaminofén , Carbón Orgánico , Ácido Peracético , Pirólisis , Contaminantes Químicos del Agua , Carbón Orgánico/química , Acetaminofén/química , Contaminantes Químicos del Agua/química , Ácido Peracético/química , Adsorción , Purificación del Agua/métodos
4.
Sci Total Environ ; 935: 172863, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788387

RESUMEN

In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.


Asunto(s)
Biocombustibles , Biomasa
5.
Environ Pollut ; 351: 124036, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677459

RESUMEN

Mitigating ground-level ozone (GLO) remains challenging due to its highly nonlinear formation process. Thus, understanding GLO pollution trends is crucial for developing effective control strategies, especially Kaohsiung industrial city, Taiwan. Based on the long-term monitoring data set of 2011-2022, temporal analysis reveals that monthly mean GLO peaks in autumn (40.66 ± 5.10 ppb), carbon monoxide (CO) and major precursors such as nitrogen oxides (NOx), nonmethane hydrocarbons (NMHC) reach their highest levels in winter. The distinct seasonal variation of air pollutants in Kaohsiung is primarily influenced by the unique blocking effect of the mountainous area under the northeasterly wind, as the city is situated downwind, causing high GLO levels during autumn due to the accumulation of stagnant air hindering the dispersion of pollutants. Over the 12 years (2011-2022), the deseasonalized trend analysis was conducted with p < 0.001, revealing a stabilization trend of GLO (+0.04 ppb/yr) from a previous sharp increase. The observed improvement is credited to a drastic decrease in total oxidants (Ox) at -0.63 ppb/yr due to significantly reducing their precursors. Furthermore, the effectiveness of precursor reduction is also supported by GLO daily maximum profile changes. While high GLO events (>120 ppb) decrease, days within midrange (60-80 ppb) rise from 24.4% to 33.3%. A notable difference emerges when comparing daytime and nighttime GLO. While daytime GLO decreased at -0.22 ppb/yr, nighttime GLO increased at +0.34 ppb/yr. Weakened nocturnal titration effects accounted for the nighttime increase. The distinct spatial variations in GLO trends on a citywide scale underscore that areas with complicated industrial activities may not benefit from a continuing reduction of precursors compared to less-polluted areas. The findings of this study hold significant implications for improving GLO control strategies in heavily industrialized city and provide valuable information to the general public about the current state of GLO pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Ozono , Estaciones del Año , Taiwán , Ozono/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Óxidos de Nitrógeno/análisis , Monóxido de Carbono/análisis
6.
Chemosphere ; 354: 141678, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485003

RESUMEN

Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to µg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Ecosistema , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas
7.
Sci Total Environ ; 926: 171793, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513854

RESUMEN

Due to global demand, millions of tons of plastics have been widely consumed, resulting in the widespread entry of vast amounts of microplastic particles into the environment. The presence of microplastics (MPs) in water supplies, including bottled water, has undergone systematic review, assessing the potential impacts of MPs on humans through exposure assessment. The main challenges associated with current technologies lie in their ability to effectively treat and completely remove MPs from drinking and supply water. While the risks posed by MPs upon entering the human body have not yet been fully revealed, there is a predicted certainty of negative impacts. This review encompasses a range of current technologies, spanning from basic to advanced treatments and varying in scale. However, given the frequent detection of MPs in drinking and bottled water, it becomes imperative to implement comprehensive management strategies to address this issue effectively. Consequently, integrating current technologies with management options such as life-cycle assessment, circular economy principles, and machine learning is crucial to eliminating this pervasive problem.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Abastecimiento de Agua
8.
Environ Res ; 247: 118227, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253192

RESUMEN

The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO3. The synthesis of KHCO3-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO3 in a mass ratio of 1:3, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g-1 across different environmental conditions. In addition, the KBAB-3 material demonstrated the advantageous characteristic of easy separation, allowing for the continued maintenance of a high efficiency in removing Cr(VI) even after undergoing numerous cycles of reuse. In conclusion, the application of KBAB-3, a novel adsorbent, exhibits considerable prospects for effective removal of Cr(VI) from diverse water sources in the near future.


Asunto(s)
Carbón Orgánico , Phaeophyceae , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Cromo/análisis , Agua , Cinética
9.
Environ Pollut ; 337: 122571, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37722478

RESUMEN

Biochar usage in soil remediation has turned out to be an enticing topic recently. Biochar, a product formed by pyrolysis of organic waste, which is rich in carbon, has the aptitude to ameliorate climate change by sequestering carbon while also enhancing soil quality and crop yields. Two-edged implications of biochar on soil amendment are still being discussed yet, clarity on the long-term implications of biochar on soil health and the environment is not yet achieved. As a result, it is crucial to systematically uncover the pertinent information regarding biochar remediation, as this can serve as a roadmap for future research on using biochar to remediate contaminated soils in mining regions. This review endeavors to bring forth run thoroughly the latest state of research on the use of biochar in soil remediation, along with its potential benefits, limitations, challenges, and future scope. By synthesizing existing literature on biochar soil remediation, this review aims to provide insights into the potential of biochar as a sustainable solution for soil remediation. Specifically, this review will highlight the key factors that influence the effectiveness of biochar for soil remediation and the potential risks associated with its use, as well as the current gaps in knowledge and future research directions.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Carbón Orgánico
10.
J Hazard Mater ; 460: 132345, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37643575

RESUMEN

Composting with food waste was assessed for its efficacy in decontaminating Bisphenol A (BPA). In a BPA-treated compost pile, the initial concentration of BPA 847 mg kg-1 fell to 6.3 mg kg-1 (99% reduction) over a 45-day composting period. The biodegradation rate was at its highest when bacterial activity peaked in the mesophilic and thermophilic phases. The average rate of total biodegradation was 18.68 mg kg-1 day-1. Standard methods were used to assess physicochemical parameters of the compost matrix and gas chromatography combined with mass spectrometry (GC/MS) was used to identify BPA intermediates. Next-generation sequencing (NGS) was used to detect BPA degraders and the diverse bacterial communities involved in BPA decomposition. These communities were found consist of 12 phyla and 21 genera during the composting process and were most diversified during the maturation phase. Three dominant phyla, Firmicutes, Pseudomonadota, and Bacteroidetes, along with Lactobacillus, Proteus, Bacillus, and Pseudomonas were found to be the most responsible for BPA degradation. Different bacterial communities were found to be involved in the food waste compost biodegradation of BPA at different stages of the composting process. In conclusion, food waste composting can effectively remove BPA, resulting in a safe product. These findings might be used to expand bioremediation technologies to apply to a wide range of pollutants.


Asunto(s)
Compostaje , Disruptores Endocrinos , Eliminación de Residuos , Animales , Biodegradación Ambiental , Alimentos
11.
Sci Total Environ ; 902: 166111, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567299

RESUMEN

Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m-3 d-1 and 1.49 ± 0.59 gP m-3 d-1, and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m-3 d-1 under various conditions.


Asunto(s)
Microalgas , Aguas Residuales , Simbiosis , Salinidad , Bacterias , Agricultura , Biomasa , Nitrógeno/análisis , Fósforo
12.
Sci Total Environ ; 902: 166172, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562633

RESUMEN

The global sulfur limit regulation mandates the use of 0.5 % low sulfur fuel oil (LSFO) to reduce emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM). However, the addition of naphthalene (Nap) to LSFO to stabilize its quality has led to an increase in polycyclic aromatic hydrocarbons (PAHs), with Nap being the main pollutant. This study investigates the effects of Nap in ship exhaust by analyzing the emission concentrations of volatile organic compounds (VOCs) and Nap in the exhaust of 16 ships, including 2 container ships, 6 bulk carriers, 1 tanker, 2 ferries, 3 fishing vessels, and 2 harbor crafts, based on USEPA method TO-15A. The results show that the percentage of Nap emissions in the exhaust gases of the 16 ship engines ranged from 77 % to 97 % of the total volatile organic compound (TVOC). The Nap concentration in the exhaust of fishing vessels, tanker, and harbor craft exceeded the occupational exposure limit of 50,000 µg/m3, with fishing vessels having the highest TVOC and Nap concentrations. The enhanced Nap emission in the air degrades air quality in port cities and poses an obvious potential public health risk. While the benefits of the global sulfur cap are being secured, additional efforts should be made to reduce the undetected side effects. Alternative stabilizers of LSFO should be considered, or Nap emission control should be boosted to mitigate the potential negative impact on harbor air quality.

13.
Sci Total Environ ; 899: 165595, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37467995

RESUMEN

Floating treatment wetlands (FTW) are nature-based solutions for the purification of open water systems such as rivers, ponds, and lakes polluted by diffuse sources as untreated or partially treated domestic wastewater and agricultural run-off. Compared with other physicochemical and biological technologies, FTW is a technology with low-cost, simple configuration, easy to operate; has a relatively high efficiency, and is energy-saving, and aesthetic. Water remediation in FTWs is supported by plant uptake and the growth of a biofilm on the water plant roots, so the selection of the macrophyte species is critical, not only to pollutant removal but also to the local ecosystem integrity, especially for full-scale implementation. The key factors such as buoyant frame/raft, plant growth support media, water depth, seasonal variation, and temperature have a considerable role in the design, operation, maintenance, and pollutant treatment performance of FTW. Harvesting is a necessary process to maintain efficient operation by limiting the re-pollution of plants in the decay phase. Furthermore, the harvested plant biomass can serve as a green source for the recovery of energy and value-added products.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Ecosistema , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Plantas , Agua , Nitrógeno/análisis
14.
Bioengineered ; 14(1): 58-80, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377408

RESUMEN

Human health/socioeconomic development is closely correlated to environmental pollution, highlighting the need to monitor contaminants in the real environment with reliable devices such as biosensors. Recently, variety of biosensors gained high attention and employed as in-situ application, in real-time, and cost-effective analytical tools for healthy environment. For continuous environmental monitoring, it is necessary for portable, cost-effective, quick, and flexible biosensing devices. These benefits of the biosensor strategy are related to the Sustainable Development Goals (SDGs) established by the United Nations (UN), especially with reference to clean water and sources of energy. However, the relationship between SDGs and biosensor application for environmental monitoring is not well understood. In addition, some limitations and challenges might hinder the biosensor application on environmental monitoring. Herein, we reviewed the different types of biosensors, principle and applications, and their correlation with SDG 6, 12, 13, 14, and 15 as a reference for related authorities and administrators to consider. In this review, biosensors for different pollutants such as heavy metals and organics were documented. The present study highlights the application of biosensor for achieving SDGs. Current advantages and future research aspects are summarized in this paper.Abbreviations: ATP: Adenosine triphosphate; BOD: Biological oxygen demand; COD: Chemical oxygen demand; Cu-TCPP: Cu-porphyrin; DNA: Deoxyribonucleic acid; EDCs: Endocrine disrupting chemicals; EPA: U.S. Environmental Protection Agency; Fc-HPNs: Ferrocene (Fc)-based hollow polymeric nanospheres; Fe3O4@3D-GO: Fe3O4@three-dimensional graphene oxide; GC: Gas chromatography; GCE: Glassy carbon electrode; GFP: Green fluorescent protein; GHGs: Greenhouse gases; HPLC: High performance liquid chromatography; ICP-MS: Inductively coupled plasma mass spectrometry; ITO: Indium tin oxide; LAS: Linear alkylbenzene sulfonate; LIG: Laser-induced graphene; LOD: Limit of detection; ME: Magnetoelastic; MFC: Microbial fuel cell; MIP: Molecular imprinting polymers; MWCNT: Multi-walled carbon nanotube; MXC: Microbial electrochemical cell-based; NA: Nucleic acid; OBP: Odorant binding protein; OPs: Organophosphorus; PAHs: Polycyclic aromatic hydrocarbons; PBBs: Polybrominated biphenyls; PBDEs: Polybrominated diphenyl ethers; PCBs: Polychlorinated biphenyls; PGE: Polycrystalline gold electrode; photoMFC: photosynthetic MFC; POPs: Persistent organic pollutants; rGO: Reduced graphene oxide; RNA: Ribonucleic acid; SDGs: Sustainable Development Goals; SERS: Surface enhancement Raman spectrum; SPGE: Screen-printed gold electrode; SPR: Surface plasmon resonance; SWCNTs: single-walled carbon nanotubes; TCPP: Tetrakis (4-carboxyphenyl) porphyrin; TIRF: Total internal reflection fluorescence; TIRF: Total internal reflection fluorescence; TOL: Toluene-catabolic; TPHs: Total petroleum hydrocarbons; UN: United Nations; VOCs: Volatile organic compounds.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Bifenilos Policlorados , Humanos , Desarrollo Sostenible , Monitoreo del Ambiente/métodos , Bifenilos Policlorados/análisis , Oro
15.
Bioresour Technol ; 381: 129146, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169205

RESUMEN

Two reciprocating membranes (rMBR) with two frequencies of 0.46 Hz (rMBR-0.46) and 0.3 Hz (rMBR-0.3) were operated to compare the treatment performance and gross energy consumption with a conventional MBR. The average organic removal rates of MBR, rMBR-0.46 and rMBR-0.3 were maintained 295 ± 51; 823 ± 296; and 397 ± 129 mgCOD/gVSS.d, respectively. Nitrogen removal was enhanced in rMBR phases compared to conventional MBR phase due to anoxic membrane chamber. Further, fouling rate was found to be highest of 16.5 mbar/day (at conventional MBR phase), which was and much decreased to1.0 mbar/day (at rMBR-0.46 phase) and then 0.2 mbar/day (rMBR-0.3 phase). The reciprocation membrane also showed energy potential by saving 10.6% electricity for each treated cubic meter of wastewater compared to the conventional MBR.


Asunto(s)
Membranas Artificiales , Aguas Residuales , Electricidad , Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado
16.
Sci Total Environ ; 891: 164344, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244611

RESUMEN

Many technical, climatic, environmental, biological, financial, educational, and regulatory factors are typically involved in solid waste management (SWM). Artificial Intelligence (AI) techniques have lately gained attraction in providing alternative computational methods for resolving problems of solid waste management. The purpose of this review is to direct solid waste management researchers taking an interest in the use of artificial intelligence in their area of study through main research elements such as AI models, their own benefits and drawbacks, effectiveness, and applications. The major AI technologies recognized are discussed in the subsections of the review, which contains a specific fusion of AI models. It also covers research that equated AI technologies to other non-AI methodologies. The section that follows contains a brief debate of the numerous SWM disciplines where AI was consciously applied. The article concludes with progress, challenges and perspectives in implementing AI-based solid waste management.

17.
Bioresour Technol ; 382: 129182, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37210031

RESUMEN

In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.


Asunto(s)
Helianthus , Agua , Peróxidos/química , Antibacterianos , Tetraciclina
19.
Sci Total Environ ; 878: 162936, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36934916

RESUMEN

The COVID-19 pandemic has caused significant disruptions to the world since 2020, with over 647 million confirmed cases and 6.7 million reported deaths as of January 2023. Despite its far-reaching impact, the effects of COVID-19 on the progress of global climate change negotiations have yet to be thoroughly evaluated. This discussion paper conducts an examination of COVID-19's impact on climate change actions at global, national, and local levels through a comprehensive review of existing literature. This analysis reveals that the pandemic has resulted in delays in implementing climate policies and altered priorities from climate action to the pandemic response. Despite these setbacks, the pandemic has also presented opportunities for accelerating the transition to a low-carbon economy. The interplay between these outcomes and the different levels of governance will play a crucial role in determining the success or failure of future climate change negotiations.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Cambio Climático , Negociación , Pandemias , Carbono
20.
Sci Total Environ ; 870: 161927, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36736400

RESUMEN

For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).


Asunto(s)
Microalgas , Fertilizantes , Agricultura , Suelo , Producción de Cultivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA