Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Microbiol Spectr ; 11(1): e0329822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36541765

RESUMEN

Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative bacterial pathogen associated with periodontitis and nonoral diseases like rheumatoid arthritis and Alzheimer´s disease. Aa isolates with the serotypes a, b, and c are globally most prevalent. Importantly, isolates displaying these serotypes have different clinical presentations. While serotype b isolates are predominant in severe periodontitis, serotypes a and c are generally encountered in mild periodontitis or healthy individuals. It is currently unknown how these differences are reflected in the overall secretion of virulence factors. Therefore, this study was aimed at a comparative analysis of exoproteomes from different clinical Aa isolates with serotypes a, b, or c by mass spectrometry, and a subsequent correlation of the recorded exoproteome profiles with virulence. Overall, we identified 425 extracellular proteins. Significant differences in the exoproteome composition of isolates with different serotypes were observed in terms of protein identification and abundance. In particular, serotype a isolates presented more extracellular proteins than serotype b or c isolates. These differences are mirrored in their virulence in infection models based on human salivary gland epithelial cells and neutrophils. Remarkably, serotype a isolates displayed stronger adhesive capabilities and induced more lysis of epithelial cells and neutrophils than serotype b or c isolates. Conversely, serotype c isolates showed relatively low leukotoxicity, while provoking NETosis to similar extents as serotype a and b isolates. Altogether, we conclude that the differential virulence presentation by Aa isolates with the dominant serotypes a, b, or c can be explained by their exoproteome heterogeneity. IMPORTANCE Periodontitis is an inflammatory disease that causes progressive destruction of alveolar bone and supporting tissues around the teeth, ultimately resulting in tooth loss. The bacterium Aggregatibacter actinomycetemcomitans (Aa) is a prevalent causative agent of periodontitis, but this oral pathogen is also associated with serious extraoral diseases like rheumatoid arthritis and Alzheimer's disease. Clinical Aa isolates are usually distinguished by serotyping, because of known serotype-specific differences in virulence. Aa with serotype b is associated with aggressive forms of periodontitis, while isolates with serotypes a or c are usually encountered in cases of mild periodontitis or healthy individuals. The molecular basis for these differences in virulence was so far unknown. In the present study, we pinpoint serotype-specific differences in virulence factor production by clinical Aa isolates. We consider these findings important, because they provide new leads for future preventive or therapeutic approaches to fight periodontitis and associated morbidities.


Asunto(s)
Enfermedad de Alzheimer , Periodontitis , Humanos , Serogrupo , Aggregatibacter actinomycetemcomitans , Virulencia , Periodontitis/microbiología , Serotipificación , Factores de Virulencia
2.
Microbiome ; 10(1): 239, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36567349

RESUMEN

BACKGROUND: The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS: Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS: Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Animales , Humanos , Staphylococcus aureus/genética , Virulencia/genética , Proteómica , Estudio de Asociación del Genoma Completo , Factores de Virulencia/genética
3.
mSystems ; 7(3): e0025422, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35695491

RESUMEN

Aggregatibacter actinomycetemcomitans is a Gram-negative bacterial pathogen associated with severe periodontitis and nonoral diseases. Clinical isolates of A. actinomycetemcomitans display a rough (R) colony phenotype with strong adherent properties. Upon prolonged culturing, nonadherent strains with a smooth (S) colony phenotype emerge. To date, most virulence studies on A. actinomycetemcomitans have been performed with S strains of A. actinomycetemcomitans, whereas the virulence of clinical R isolates has received relatively little attention. Since the extracellular proteome is the main bacterial reservoir of virulence factors, the present study was aimed at a comparative analysis of this subproteome fraction for a collection of R isolates and derivative S strains, in order to link particular proteins to the virulence of A. actinomycetemcomitans with serotype b. To assess the bacterial virulence, we applied different infection models based on larvae of the greater wax moth Galleria mellonella, a human salivary gland-derived epithelial cell line, and freshly isolated neutrophils from healthy human volunteers. A total number of 351 extracellular A. actinomycetemcomitans proteins was identified by mass spectrometry, with the S strains consistently showing more extracellular proteins than their parental R isolates. A total of 50 known extracellular virulence factors was identified, of which 15 were expressed by all investigated bacteria. Importantly, the comparison of differences in exoproteome composition and virulence highlights critical roles of 10 extracellular proteins in the different infection models. Together, our findings provide novel clues for understanding the virulence of A. actinomycetemcomitans and for development of potential preventive or therapeutic avenues to neutralize this important oral pathogen. IMPORTANCE Periodontitis is one of the most common inflammatory diseases worldwide, causing high morbidity and decreasing the quality of life of millions of people. The bacterial pathogen Aggregatibacter actinomycetemcomitans is strongly associated with aggressive forms of periodontitis. Moreover, it has been implicated in serious nonoral infections, including endocarditis and brain abscesses. Therefore, it is important to investigate how A. actinomycetemcomitans can cause disease. In the present study, we applied a mass spectrometry approach to make an inventory of the virulence factors secreted by different clinical A. actinomycetemcomitans isolates and derivative strains that emerged upon culturing. We subsequently correlated the secreted virulence factors to the pathogenicity of the investigated bacteria in different infection models. The results show that a limited number of extracellular virulence factors of A. actinomycetemcomitans have central roles in pathogenesis, indicating that they could be druggable targets to prevent or treat oral disease.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Periodontitis , Humanos , Virulencia , Aggregatibacter actinomycetemcomitans/genética , Calidad de Vida , Periodontitis/microbiología , Factores de Virulencia
4.
FEMS Microbiol Rev ; 46(5)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35675307

RESUMEN

Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.


Asunto(s)
Pared Celular , Staphylococcus aureus Resistente a Meticilina , N-Acetil Muramoil-L-Alanina Amidasa , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Virulencia
5.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35662397

RESUMEN

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Asunto(s)
Coenzima A , Microbiota , Animales , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Femenino , Humanos , Madres , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cigoto/metabolismo
6.
Sci Rep ; 11(1): 13865, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226629

RESUMEN

Staphylococcus aureus is an opportunistic pathogen causing high morbidity and mortality. Since multi-drug resistant S. aureus lineages are nowadays omnipresent, alternative tools for preventive or therapeutic interventions, like immunotherapy, are urgently needed. However, there are currently no vaccines against S. aureus. Surface-exposed and secreted proteins are regarded as potential targets for immunization against S. aureus infections. Yet, many potential staphylococcal antigens of this category do not elicit protective immune responses. To obtain a better understanding of this problem, we compared the binding of serum IgGs from healthy human volunteers, highly S. aureus-colonized patients with the genetic blistering disease epidermolysis bullosa (EB), or immunized mice to the purified S. aureus peptidoglycan hydrolases Sle1, Aly and LytM and their different domains. The results show that the most abundant serum IgGs from humans and immunized mice target the cell wall-binding domain of Sle1, and the catalytic domains of Aly and LytM. Interestingly, in a murine infection model, these particular IgGs were not protective against S. aureus bacteremia. In contrast, relatively less abundant IgGs against the catalytic domain of Sle1 and the N-terminal domains of Aly and LytM were almost exclusively detected in sera from EB patients and healthy volunteers. These latter IgGs may contribute to the protection against staphylococcal infections, as previous studies suggest that serum IgGs protect EB patients against severe S. aureus infection. Together, these observations focus attention on the use of particular protein domains for vaccination to direct potentially protective immune responses towards the most promising epitopes within staphylococcal antigens.


Asunto(s)
Inmunoglobulina G/inmunología , Staphylococcus aureus Resistente a Meticilina/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Dominio Catalítico/genética , Dominio Catalítico/inmunología , Pared Celular/genética , Pared Celular/inmunología , Epítopos/genética , Epítopos/inmunología , Humanos , Inmunoglobulina G/genética , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , N-Acetil Muramoil-L-Alanina Amidasa/química , Peptidoglicano/genética , Peptidoglicano/inmunología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/prevención & control
7.
Essays Biochem ; 65(2): 187-195, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-33955475

RESUMEN

Secreted recombinant proteins are of great significance for industry, healthcare and a sustainable bio-based economy. Consequently, there is an ever-increasing need for efficient production platforms to deliver such proteins in high amounts and high quality. Gram-positive bacteria, particularly bacilli such as Bacillus subtilis, are favored for the production of secreted industrial enzymes. Nevertheless, recombinant protein production in the B. subtilis cell factory can be very challenging due to bottlenecks in the general (Sec) secretion pathway as well as this bacterium's intrinsic capability to secrete a cocktail of highly potent proteases. This has placed another Gram-positive bacterium, Lactococcus lactis, in the focus of attention as an alternative, non-proteolytic, cell factory for secreted proteins. Here we review our current understanding of the secretion pathways exploited in B. subtilis and L. lactis to deliver proteins from their site of synthesis, the cytoplasm, into the fermentation broth. An advantage of this cell factory comparison is that it identifies opportunities for protein secretion pathway engineering to remove or bypass current production bottlenecks. Noteworthy new developments in cell factory engineering are the mini-Bacillus concept, highlighting potential advantages of massive genome minimization, and the application of thus far untapped 'non-classical' protein secretion routes. Altogether, it is foreseen that engineered lactococci will find future applications in the production of high-quality proteins at the relatively small pilot scale, while engineered bacilli will remain a favored choice for protein production in bulk.


Asunto(s)
Bacillus subtilis , Lactococcus lactis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ingeniería de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
JCI Insight ; 5(22)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33048846

RESUMEN

Infections caused by multidrug-resistant Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), are responsible for high mortality and morbidity worldwide. Resistant lineages were previously confined to hospitals but are now also causing infections among healthy individuals in the community. It is therefore imperative to explore therapeutic avenues that are less prone to raise drug resistance compared with today's antibiotics. An opportunity to achieve this ambitious goal could be provided by targeted antimicrobial photodynamic therapy (aPDT), which relies on the combination of a bacteria-specific targeting agent and light-induced generation of ROS by an appropriate photosensitizer. Here, we conjugated the near-infrared photosensitizer IRDye700DX to a fully human mAb, specific for the invariantly expressed staphylococcal antigen immunodominant staphylococcal antigen A (IsaA). The resulting immunoconjugate 1D9-700DX was characterized biochemically and in preclinical infection models. As demonstrated in vitro, in vivo, and in a human postmortem orthopedic implant infection model, targeted aPDT with 1D9-700DX is highly effective. Importantly, combined with the nontoxic aPDT-enhancing agent potassium iodide, 1D9-700DX overcomes the antioxidant properties of human plasma and fully eradicates high titers of MRSA. We show that the developed immunoconjugate 1D9-700DX targets MRSA and kills it upon illumination with red light, without causing collateral damage to human cells.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Antibacterianos/farmacología , Anticuerpos Monoclonales/farmacología , Antígenos Bacterianos/inmunología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Infecciones Estafilocócicas/terapia , Células HeLa , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación
9.
Virulence ; 11(1): 947-963, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32726182

RESUMEN

Staphylococcus aureus: with the sequence type (ST) 398 was previously associated with livestock carriage. However, in recent years livestock-independent S. aureus ST398 has emerged, representing a potential health risk for humans especially in nosocomial settings. Judged by whole-genome sequencing analyses, the livestock- and human originated strains belong to two different S. aureus ST398 clades but, to date, it was not known to what extent these clades differ in terms of actual virulence. Therefore, the objective of this study was to profile the exoproteomes of 30 representative S. aureus ST398 strains by mass spectrometry, to assess clade-specific differences in virulence factor secretion, and to correlate the identified proteins and their relative abundance to the strains' actual virulence. Although the human-originated strains are more heterogeneous at the genome level, our observations show that they are more homogeneous in terms of virulence factor production than the livestock-associated strains. To assess differences in virulence, infection models based on larvae of the wax moth Galleria mellonella and the human HeLa cell line were applied. Correlation of the exoproteome data to larval killing and toxicity toward HeLa cells uncovered critical roles of the staphylococcal Sbi, SpA, SCIN and CHIPS proteins in virulence. These findings were validated by showing that sbi or spa mutant bacteria are attenuated in G. mellonella and that the purified SCIN and CHIPS proteins are toxic for HeLa cells. Altogether, we show that exoproteome profiling allows the identification of critical determinants for virulence of livestock-associated and human-originated S. aureus ST398 strains.


Asunto(s)
Proteínas Bacterianas/análisis , Ganado/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Animales , Genoma Bacteriano , Células HeLa , Humanos , Larva/microbiología , Espectrometría de Masas , Mariposas Nocturnas/microbiología , Filogenia , Proteómica , Staphylococcus aureus/clasificación , Virulencia , Factores de Virulencia , Secuenciación Completa del Genoma
10.
J Proteome Res ; 19(8): 2997-3010, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32529827

RESUMEN

The opportunistic pathogen Staphylococcus aureus has become a major threat for human health and well-being by developing resistance to antibiotics and by fast evolution into new lineages that rapidly spread within the healthy human population. This calls for development of active or passive immunization strategies to prevent or treat acute phase infections. Since no such anti-staphylococcal immunization approaches are available for clinical implementation, the present studies were aimed at identifying new leads for their development. For this purpose, we profiled the cell-surface-exposed staphylococcal proteome under infection-mimicking conditions by combining two approaches for "bacterial shaving" with immobilized or soluble trypsin and subsequent mass spectrometry analysis of liberated peptides. In parallel, non-covalently cell-wall-bound proteins extracted with potassium thiocyanate and the exoproteome fraction were analyzed by gel-free proteomics. All data are available through ProteomeXchange accession PXD000156. To pinpoint immunodominant bacterial-surface-exposed epitopes, we screened selected cell-wall-attached proteins of S. aureus for binding of immunoglobulin G from patients who have been challenged by different types of S. aureus due to chronic wound colonization. The combined results of these analyses highlight particular cell-surface-exposed S. aureus proteins with highly immunogenic exposed epitopes as potential targets for development of protective anti-staphylococcal immunization strategies.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas Bacterianas , Membrana Celular , Humanos , Epítopos Inmunodominantes , Proteoma , Infecciones Estafilocócicas/prevención & control
11.
J Proteome Res ; 18(7): 2859-2874, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31119940

RESUMEN

Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.


Asunto(s)
Staphylococcus aureus/patogenicidad , Factores de Virulencia/análisis , Animales , Proteínas Bacterianas/análisis , Heterogeneidad Genética , Células HeLa , Humanos , Espectrometría de Masas , Staphylococcus aureus Resistente a Meticilina , Mariposas Nocturnas/microbiología , Proteoma , Infecciones Estafilocócicas , Staphylococcus aureus/aislamiento & purificación
12.
Sci Rep ; 8(1): 3234, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459694

RESUMEN

Human antibody responses to pathogens, like Staphylococcus aureus, are important indicators for in vivo expression and immunogenicity of particular bacterial components. Accordingly, comparing the antibody responses to S. aureus components may serve to predict their potential applicability as antigens for vaccination. The present study was aimed at assessing immunoglobulin G (IgG) responses elicited by non-covalently cell surface-bound proteins of S. aureus, which thus far received relatively little attention. To this end, we applied plasma samples from patients with the genetic blistering disease epidermolysis bullosa (EB) and healthy S. aureus carriers. Of note, wounds of EB patients are highly colonized with S. aureus and accordingly these patients are more seriously exposed to staphylococcal antigens than healthy individuals. Ten non-covalently cell surface-bound proteins of S. aureus, namely Atl, Eap, Efb, EMP, IsaA, LukG, LukH, SA0710, Sle1 and SsaA2, were selected by bioinformatics and biochemical approaches. These antigens were recombinantly expressed, purified and tested for specific IgG responses using human plasma. We show that high exposure of EB patients to S. aureus is mirrored by elevated IgG levels against all tested non-covalently cell wall-bound staphylococcal antigens. This implies that these S. aureus cell surface proteins are prime targets for the human immune system.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Formación de Anticuerpos , Proteínas Bacterianas/inmunología , Proteínas de la Membrana/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Portador Sano/inmunología , Epidermólisis Ampollosa/inmunología , Humanos , Inmunoglobulina G/sangre
13.
Sci Rep ; 8(1): 1305, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358617

RESUMEN

The key to effective treatment of bacterial infections is a swift and reliable diagnosis. Current clinical standards of bacterial diagnosis are slow and laborious. There are several anatomical imaging modalities that can detect inflammation, but none can distinguish between bacterial and sterile inflammation. Novel tracers such as smart activatable fluorescent probes represent a promising development that allow fast and specific testing without the use of ionizing radiation. Previously, a smart activatable probe was developed that is a substrate for the micrococcal nuclease as produced by Staphylococcus aureus. In the present study, the function of this probe was validated. Practical applicability in terms of sensitivity was assessed by incubation of the probe with 26 clinical S. aureus isolates, and probe specificity was verified by incubation with 30 clinical isolates and laboratory strains of various bacterial pathogens. The results show that the nuclease-specific probe was activated by all tested S. aureus isolates and laboratory strains with a threshold of ~106-107 cells/mL. The probe was also activated by certain opportunistic staphylococci. We therefore propose that the studied nuclease probe represents a significant step forward to address the need for a rapid, practical, and precise method to detect infections caused by S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desoxirribonucleasas/metabolismo , Imagen Óptica/métodos , Staphylococcus aureus/enzimología , Colorantes Fluorescentes
14.
Virulence ; 9(1): 262-272, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29166841

RESUMEN

Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, 89Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibody 1D9.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Imagen Óptica/métodos , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Cutáneas Estafilocócicas/diagnóstico por imagen , Staphylococcus aureus/aislamiento & purificación , Animales , Anticuerpos Monoclonales/química , Antígenos Bacterianos/metabolismo , Cadáver , Modelos Animales de Enfermedad , Colorantes Fluorescentes/química , Humanos , Ratones , Infecciones Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/microbiología
15.
Virulence ; 9(1): 70-82, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28277903

RESUMEN

Staphylococcus aureus is a serious public health burden causing a wide variety of infections. Earlier detection of such infections could result in faster and more directed therapies that also prevent resistance development. Human monoclonal antibodies (humAbs) are promising tools for diagnosis and therapy owing to their relatively straightforward synthesis, long history of safe clinical use and high target specificity. Here we show that the humAb 6D4, which was obtained from a random screen of B-cells producing antibodies that bind to whole cells of S. aureus, targets the staphylococcal complement inhibitor (SCIN). The epitope recognized by 6D4 was localized to residues 26 to 36 in the N-terminus of SCIN, which overlap with the active site. Accordingly, 6D4 can inhibit SCIN activity as demonstrated through the analysis of C3b deposition on S. aureus cells and complement-induced lysis of rabbit erythrocytes. Importantly, while SCIN is generally regarded as a secreted virulence factor, 6D4 allowed detection of strongly increased SCIN binding to S. aureus cells upon exposure to human serum, relating to the known binding of SCIN to C3 convertases deposited on the staphylococcal cell surface. Lastly, we show that labeling of humAb 6D4 with a near-infrared fluorophore allows one-step detection of SCIN-producing S. aureus cells. Together, our findings show that the newly described humAb 6D4 specifically recognizes S. aureus SCIN, which can potentially be used for detection of human serum-incubated S. aureus strains expressing SCIN.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos/metabolismo , Inactivadores del Complemento/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Animales , Anticuerpos Antibacterianos/química , Anticuerpos Monoclonales/química , Antígenos Bacterianos/química , Dominio Catalítico , Convertasas de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Inactivadores del Complemento/química , Colorantes Fluorescentes/química , Humanos , Microscopía Fluorescente , Unión Proteica , Conejos , Factores de Virulencia/química
16.
Appl Microbiol Biotechnol ; 101(22): 8139-8149, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28971274

RESUMEN

The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for nisin-inducible extracellular production of N- or C-terminally hexa-histidine (His6)-tagged proteins. The present study was aimed at expanding our portfolio of L. lactis expression vectors for protein purification and site-specific labeling. Specifically, we present two new groups of vectors allowing N- or C-terminal provision of proteins with a Strep-tag II or AVI-tag. Vectors for AVI-tagging encode an additional His6-tag for protein purification. Another set of vectors allows removal of N-terminal Strep- or His6-tags from expressed proteins with the tobacco etch virus protease. Two possible applications of the developed vectors are presented. First, we show that Strep-tagged LytM of Staphylococcus aureus in the growth medium of L. lactis can be directly bound to microtiter plates coated with an affinity reagent and used for enzyme-linked immunosorbent assays. Second, we show that the AVI-tagged Sle1 protein from S. aureus produced in L. lactis can be directly biotinylated and fluorescently labeled. The fluorescently labeled Sle1 was successfully applied for S. aureus re-binding studies, allowing subcellular localization by fluorescence microscopy. In conclusion, we have developed a set of expression vectors that enhances the versatility of L. lactis as a system for production of proteins with tags that can be used for affinity purification and site-specific protein labeling.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Vectores Genéticos , Lactococcus lactis/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/química , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Lactococcus lactis/metabolismo , Oligopéptidos/química , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/metabolismo
17.
Sci Rep ; 7(1): 8141, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811514

RESUMEN

The immunodominant staphylococcal antigen A (IsaA) is a potential target for active or passive immunization against the important human pathogen Staphylococcus aureus. Consistent with this view, monoclonal antibodies against IsaA were previously shown to be protective against S. aureus infections in mouse models. Further, patients with the genetic blistering disease epidermolysis bullosa (EB) displayed high IsaA-specific IgG levels that could potentially be protective. Yet, mice actively immunized with IsaA were not protected against S. aureus infection. The present study was aimed at explaining these differences in IsaA-specific immune responses. By epitope mapping, we show that the protective human monoclonal antibody (humAb) 1D9 recognizes a conserved 62-residue N-terminal domain of IsaA. The same region of IsaA is recognized by IgGs in EB patient sera. Further, we show by immunofluorescence microscopy that this N-terminal IsaA domain is exposed on the S. aureus cell surface. In contrast to the humAb 1D9 and IgGs from EB patients, the non-protective IgGs from mice immunized with IsaA were shown to predominantly bind the C-terminal domain of IsaA. Altogether, these observations focus attention on the N-terminal region of IsaA as a potential target for future immunization against S. aureus.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Epítopos/inmunología , Inmunoglobulina G/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Biología Computacional/métodos , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Femenino , Humanos , Inmunización , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
18.
Appl Microbiol Biotechnol ; 101(3): 1099-1110, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27660179

RESUMEN

Analysis of autolysis of derivatives of Lactococcus lactis subsp. cremoris MG1363 and subsp. lactis IL1403, both lacking the major autolysin AcmA, showed that L. lactis IL1403 still lysed during growth while L. lactis MG1363 did not. Zymographic analysis revealed that a peptidoglycan hydrolase activity of around 30 kDa is present in cell extracts of L. lactis IL1403 that could not be detected in strain MG1363. A comparison of all genes encoding putative peptidoglycan hydrolases of IL1403 and MG1363 led to the assumption that one or more of the 99 % homologous 27.9-kDa endolysins encoded by the prophages bIL285, bIL286 and bIL309 could account for the autolysis phenotype of IL1403. Induced expression of the endolysins from bIL285, bIL286 or bIL309 in L. lactis MG1363 resulted in detectable lysis or lytic activity. Prophage deletion and insertion derivatives of L. lactis IL1403 had a reduced cell lysis phenotype. RT-qPCR and zymogram analysis showed that each of these strains still expressed one or more of the three phage lysins. A homologous gene and an endolysin activity were also identified in the natural starter culture L. lactis subsp. cremoris strains E8, Wg2 and HP, and the lytic activity could be detected under growth conditions that were identical as those used for IL1403. The results presented here show that these endolysins of L. lactis are expressed during normal growth and contribute to autolysis without production of (lytic) phages. Screening for natural strains expressing homologous endolysins could help in the selection of strains with enhanced autolysis and, thus, cheese ripening properties.


Asunto(s)
Bacteriólisis , Endopeptidasas/genética , Lactococcus lactis/fisiología , Profagos/genética , Queso/microbiología , Endopeptidasas/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Lactococcus lactis/virología , Muramidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Secuencia
19.
Appl Microbiol Biotechnol ; 99(21): 9037-48, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26160391

RESUMEN

Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized metal affinity chromatography was so far lacking. Here we describe three novel vectors that, respectively, facilitate the nisin-inducible production of N- or C-terminally hexa-histidine (His6)-tagged proteins in L. lactis. One of these vectors also encodes a tobacco etch virus (TEV) protease cleavage site allowing removal of the N-terminal His6-tag from expressed proteins. Successful application of the developed vectors for protein expression, purification and/or functional studies is exemplified with six different cell wall-bound or secreted proteins from Staphylococcus aureus. The results show that secretory production of S. aureus proteins is affected by the position, N- or C-terminal, of the His6-tag. This seems to be due to an influence of the His6-tag on protein stability. Intriguingly, the S. aureus IsdB protein, which is phosphorylated in S. aureus, was also found to be phosphorylated when heterologously produced in L. lactis, albeit not on the same Tyr residue. This implies that this particular post-translational protein modification is to some extent conserved in S. aureus and L. lactis. Altogether, we are confident that the present vector set combined with the L. lactis expression host has the potential to become a very useful tool in optimization of the expression, purification and functional analysis of extracytoplasmic bacterial proteins.


Asunto(s)
Vectores Genéticos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Cromatografía de Afinidad , Nisina/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Staphylococcus aureus/genética , Activación Transcripcional/efectos de los fármacos
20.
Sci Rep ; 5: 8188, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25641235

RESUMEN

Chronic nasal carriage of the bacterium Staphylococcus aureus in patients with the autoimmune disease granulomatosis with polyangiitis (GPA) is a risk factor for disease relapse. To date, it was neither known whether GPA patients show similar humoral immune responses to S. aureus as healthy carriers, nor whether specific S. aureus types are associated with GPA. Therefore, this study was aimed at assessing humoral immune responses of GPA patients against S. aureus antigens in relation to the genetic diversity of their nasal S. aureus isolates. A retrospective cohort study was conducted, including 85 GPA patients and 18 healthy controls (HC). Humoral immune responses against S. aureus were investigated by determining serum IgG levels against 59 S. aureus antigens. Unexpectedly, patient sera contained lower anti-staphylococcal IgG levels than sera from HC, regardless of the patients' treatment, while total IgG levels were similar or higher. Furthermore, 210 S. aureus isolates obtained from GPA patients were characterized by different typing approaches. This showed that the S. aureus population of GPA patients is highly diverse and mirrors the general S. aureus population. Our combined findings imply that GPA patients are less capable of mounting a potentially protective antibody response to S. aureus than healthy individuals.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Granulomatosis con Poliangitis/patología , Inmunoglobulina G/sangre , Staphylococcus aureus/inmunología , Adulto , Anciano , Antibacterianos/farmacología , Estudios de Cohortes , Farmacorresistencia Bacteriana , Femenino , Granulomatosis con Poliangitis/metabolismo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Estudios Retrospectivos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA