Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898005

RESUMEN

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Ováricas , Empalmosomas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Empalmosomas/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Animales , Ratones , Vesículas Extracelulares/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Reparación del ADN
2.
J Med Microbiol ; 71(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35037614

RESUMEN

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Asunto(s)
Mycoplasma hominis , Proteoma , Timidina/metabolismo , Arginina , Humanos , Infecciones por Mycoplasma , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Fenotipo , Fosfatos , Ribonucleósidos
3.
Data Brief ; 39: 107658, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917708

RESUMEN

Human multiforme glioblastoma is characterized by an unfavorable prognosis, low survival rate and extremely limited possibilities for therapy. Rat C6 glioma is an experimental model for the study of glioblastoma growth and invasion. It has been shown that the growth and development of the tumor is accompanied by changes in the surrounding normotypic tissues [1]. These changes create a favorable environment for the development of the tumor and give it an evolutionary advantage [2]. Description of changes occurring in normotypic cells of the body upon their contact with tumor cells is of great interest. We have grown C6 glioma cells and rat astrocytes, as well as astrocyte cells co-cultured together with C6 glioma. We performed proteome-wide LC-MS analysis of these experimental groups. The data includes LC-MS/MS raw files and exported MaxQuant and ProteinPilot search results with fasta. Dataset published in the PRIDE repository project accession PXD026776.

4.
FEBS Open Bio ; 10(2): 180-196, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31785127

RESUMEN

Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D-PAGE, fluorescent mucin binding on a blot and HPLC-MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu-1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.


Asunto(s)
Mucinas/metabolismo , Activación Neutrófila/fisiología , Neutrófilos/metabolismo , Adsorción , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Porinas , Espectrometría de Masas en Tándem
5.
Data Brief ; 27: 104417, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31687427

RESUMEN

Crohn's disease (CD) is a type of inflammatory bowel disease (IDB). The endoscopic picture of Crohn's disease includes thickened submucosa, transmural inflammation, fissuring ulceration, and non-caseating granulomas. Intestinal microbiome dysbiosis has been described systematically in patients with IBD. In recent decades it was detailed that Escherichia coli, especially adherent-invasive E. coli (AIEC) pathotype, has been implicated in the pathogenesis of IBD, including Crohn's disease (Palmela, et al., 2018). In comparison with commensal strains of E. coli, AIEC strains have a large adhesive-invasive potential therefore its surface composition is of great interest. We presented a dataset of the membrane proteins of strains isolated from patients with Crohn's disease. From the set of Escherichia coli isolated from Crohn's disease patients [2] we chose three isolates with strongest AIEC pathotype. We performed proteome-wide LC-MS analysis of membrane fraction of this isolates after invasion or adhesion-invasion to human intestinal CaCo-2 cell line and prior to this (control). The data including LC-MS/MS raw files and exported MaxQuant search results with fasta files were deposited to the PRIDE repository project accession PXD014250.

6.
Data Brief ; 23: 103734, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31372401

RESUMEN

One of the dysbioses often observed in Crohn's disease (CD) patients is an increased abundance of Escherichia coli (10-100 fold compared to healthy individuals) (Gevers et al., 2014). The data reported is a large-scale proteome profile for E. coli isolates collected from CD patients and healthy individuals. 43 isolates were achieved from 30 CD patients (17 male, 12 female, median age 30) and 19 isolates from 7 healthy individuals (7 male, median age 19). Isolates were cultivated on LB medium at aerobic conditions up to medium log phase. Protein extraction was performed with sodium deoxycholate (DCNa) and urea, alcylation with tris(2-carboxyethyl)phosphine and iodacetamide. Protein trypsinolysis was performed as described in (Matyushkina et al., 2016). Total cell proteomes were analysed by shotgun proteomics with HPLC-MS/MS on a maXis qTOF mass-spectrometer. The data including HPLC-MS/MS raw files and exported Mascot search results was deposited to the PRIDE repository project accession: PXD010920, project https://doi.org/10.6019/PXD010920.

7.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616513

RESUMEN

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Asunto(s)
Acetatos/farmacología , Antiinfecciosos/metabolismo , Bryopsida/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Antiinfecciosos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Bryopsida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Péptidos/aislamiento & purificación
8.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181282

RESUMEN

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Metabolómica/métodos , Animales , Antibacterianos/metabolismo , Bacillus pumilus/efectos de los fármacos , Bacillus pumilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cumarinas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana/fisiología , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Dispositivos Laboratorio en un Chip , Proteómica/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Análisis de la Célula Individual/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Ursidae/microbiología
9.
Sci Rep ; 6: 35959, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775027

RESUMEN

What strategies do bacteria employ for adaptation to their hosts and are these strategies different for varied hosts? To date, many studies on the interaction of the bacterium and its host have been published. However, global changes in the bacterial cell in the process of invasion and persistence, remain poorly understood. In this study, we demonstrated phase transition of the avian pathogen Mycoplasma gallisepticum upon invasion of the various types of eukaryotic cells (human, chicken, and mouse) which was stable during several passages after isolation of intracellular clones and recultivation in a culture medium. It was shown that this phase transition is manifested in changes at the proteomic, genomic and metabolomic levels. Eukaryotic cells induced similar proteome reorganization of M. gallisepticum during infection, despite different origins of the host cell lines. Proteomic changes affected a broad range of processes including metabolism, translation and oxidative stress response. We determined that the activation of glycerol utilization, overproduction of hydrogen peroxide and the upregulation of the SpxA regulatory protein occurred during intracellular infection. We propose SpxA as an important regulator for the adaptation of M. gallisepticum to an intracellular environment.


Asunto(s)
Adaptación Biológica , Adaptación Fisiológica , Endocitosis , Mycoplasma gallisepticum/fisiología , Animales , Línea Celular , Pollos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Metaboloma , Ratones , Proteoma/análisis , Pase Seriado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA