Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16916, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805552

RESUMEN

Cereal/legume intercropping is becoming a popular production strategy for higher crop yields and net profits with reduced inputs and environmental impact. However, the effects of different spatial arrangements on the growth, grain yield, nitrogen uptake, and land-use advantage of wheat/soybean relay intercropping are still unclear, particularly under arid irrigated conditions. Therefore, in a three-year field study from 2018 to 2021, soybean was relay intercropped with wheat in different crop configurations (0.9 m, narrow strips; 1.8 m, medium strips; and 2.7 m, wide strips), and the results of intercropping systems were compared with their sole systems. Results revealed that intercrops with wide strips outperformed the narrow and medium strips, when the objective was to obtain higher total leaf area, dry matter, nitrogen uptake, and grain yield on a given land area due to reduced interspecific competition between intercrops. Specifically, at maturity, wide strips increased the dry matter accumulation (37% and 58%) and its distribution in roots (37% and 55%), straw (40% and 61%), and grains (30% and 46%) of wheat and soybean, respectively, compared to narrow strips. This enhanced dry matter in wide strips improved the soybean's competitive ability (by 17%) but reduced the wheat's competitive ability (by 12%) compared with narrow strips. Noticeably, all intercropping systems accumulated a significantly higher amount of nitrogen than sole systems, revealing that wheat/soybean relay intercropping requires fewer anthropogenic inputs (nitrogen) and exerts less pressure on the ecosystem than sole systems. Overall, in wide strips, intercropped wheat and soybean achieved 62% and 71% of sole wheat and soybean yield, respectively, which increased the greater total system yield (by 19%), total land equivalent ratio (by 24%), and net profit (by 34%) of wide strips compared to narrow strips. Our study, therefore, implies that the growth parameters, grain yields, nutrient accumulation, and land-use advantage of intercrop species could be improved with the proper spatial arrangement in cereal/legume intercropping systems.


Asunto(s)
Agricultura , Grano Comestible , Agricultura/métodos , Glycine max , Triticum , Nitrógeno , Ecosistema , Productos Agrícolas , Zea mays
2.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111833

RESUMEN

The projected rise in global ambient temperature by 3-5 °C by the end of this century, along with unpredicted heat waves during critical crop growth stages, can drastically reduce grain yield and will pose a great food security challenge. It is therefore important to identify wheat genetic resources able to withstand high temperatures, discover genes underpinning resilience to higher temperatures, and deploy such genetic resources in wheat breeding to develop heat-tolerant cultivars. In this study, 180 accessions of synthetic hexaploid wheats (SHWs) were evaluated under normal and late wheat growing seasons (to expose them to higher temperatures) at three locations (Islamabad, Bahawalpur, and Tando Jam), and data were collected on 11 morphological and yield-related traits. The diversity panel was genotyped with a 50 K SNP array to conduct genome-wide association studies (GWASs) for heat tolerance in SHW. A known heat-tolerance locus, TaHST1, was profiled to identify different haplotypes of this locus in SHWs and their association with grain yield and related traits in SHWs. There was a 36% decrease in grain yield (GY), a 23% decrease in thousand-grain weight (TKW), and an 18% decrease in grains per spike (GpS) across three locations in the population due to the heat stress conditions. GWASs identified 143 quantitative trait nucleotides (QTNs) distributed over all 21 chromosomes in the SHWs. Out of these, 52 QTNs were associated with morphological and yield-related traits under heat stress, while 15 of them were pleiotropically associated with multiple traits. The heat shock protein (HSP) framework of the wheat genome was then aligned with the QTNs identified in this study. Seventeen QTNs were in proximity to HSPs on chr2B, chr3D, chr5A, chr5B, chr6D, and chr7D. It is likely that QTNs on the D genome and those in proximity to HSPs may carry novel alleles for heat-tolerance genes. The analysis of TaHST1 indicated that 15 haplotypes were present in the SHWs for this locus, while hap1 showed the highest frequency of 25% (33 SHWs). These haplotypes were significantly associated with yield-related traits in the SHWs. New alleles associated with yield-related traits in SHWs could be an excellent reservoir for breeding deployment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA