Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(31): eadg2122, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540749

RESUMEN

Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunación , Inmunoglobulina G , ARN Mensajero , Quimiocina CXCL13/genética
2.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35409035

RESUMEN

Apolipoprotein E (ApoE) is a multifunctional protein expressed in several tissues, including those of the liver. This lipoprotein component is responsible for maintaining lipid content homeostasis at the plasma and tissue levels by transporting lipids between the liver and peripheral tissues. The ability of ApoE to interact with host-cell surface receptors and its involvement in several cellular pathways raised questions about the hijacking of ApoE by hepatotropic viruses. Hepatitis C virus (HCV) was the first hepatitis virus reported to be dependent on ApoE for the completion of its lifecycle, with ApoE being part of the viral particle, mediating its entry into host cells and contributing to viral morphogenesis. Recent studies of the hepatitis B virus (HBV) lifecycle have revealed that this virus and its subviral envelope particles also incorporate ApoE. ApoE favors HBV entry and is crucial for the morphogenesis of infectious particles, through its interaction with HBV envelope glycoproteins. This review summarizes the data highlighting the crucial role of ApoE in the lifecycles of HBV and HCV and discusses its potential role in the lifecycle of other hepatotropic viruses.


Asunto(s)
Hepacivirus , Hepatitis C , Apolipoproteínas E/metabolismo , Hepacivirus/metabolismo , Virus de la Hepatitis B/metabolismo , Humanos , Virión/metabolismo
3.
Hepatology ; 74(2): 627-640, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33665810

RESUMEN

BACKGROUND AND AIMS: Standard hepatitis C virus (HCV) cell-culture models present an altered lipid metabolism and thus produce lipid-poor lipoviral particles (LVPs). These models are thereby weakly adapted to explore the complete natural viral life cycle. APPROACH AND RESULTS: To overcome these limitations, we used an HCV cell-culture model based on both cellular differentiation and sustained hypoxia to better mimic the host-cell environment. The long-term exposure of Huh7.5 cells to DMSO and hypoxia (1% O2 ) significantly enhanced the expression of major differentiation markers and the cellular hypoxia adaptive response by contrast with undifferentiated and normoxic (21% O2 ) standard conditions. Because hepatocyte-like differentiation and hypoxia are key regulators of intracellular lipid metabolism, we characterized the distribution of lipid droplets (LDs) and demonstrated that experimental cells significantly accumulate larger and more numerous LDs relative to standard cell-culture conditions. An immunocapture (IC) and transmission electron microscopy (TEM) method showed that differentiated and hypoxic Huh7.5 cells produced lipoproteins significantly larger than those produced by standard Huh7.5 cell cultures. The experimental cell culture model is permissive to HCV-Japanese fulminant hepatitis (JFH1) infection and produces very-low-buoyant-density LVPs that are 6-fold more infectious than LVPs formed by standard JFH1-infected Huh7.5 cells. Finally, the IC-TEM approach and antibody-neutralization experiments revealed that LVPs were highly lipidated, had a global ultrastructure and a conformation of the envelope glycoprotein complex E1E2 close to that of the ones circulating in infected individuals. CONCLUSIONS: This relevant HCV cell culture model thus mimics the complete native intracellular HCV life cycle and, by extension, can be proposed as a model of choice for studies of other hepatotropic viruses.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/virología , Hepatocitos/virología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Hipoxia de la Célula , Línea Celular Tumoral , Hepatocitos/fisiología , Humanos
4.
Cells ; 8(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121874

RESUMEN

During Hepatitis C virus (HCV) morphogenesis, the non-structural protein 2 (NS2) brings the envelope proteins 1 and 2 (E1, E2), NS3, and NS5A together to form a complex at the endoplasmic reticulum (ER) membrane, initiating HCV assembly. The nature of the interactions in this complex is unclear, but replication complex and structural proteins have been shown to be associated with cellular membrane structures called detergent-resistant membranes (DRMs). We investigated the role of DRMs in NS2 complex formation, using a lysis buffer combining Triton and n-octyl glucoside, which solubilized both cell membranes and DRMs. When this lysis buffer was used on HCV-infected cells and the resulting lysates were subjected to flotation gradient centrifugation, all viral proteins and DRM-resident proteins were found in soluble protein fractions. Immunoprecipitation assays demonstrated direct protein-protein interactions between NS2 and E2 and E1 proteins, and an association of NS2 with NS3 through DRMs. The well-folded E1E2 complex and NS5A were not associated, instead interacting separately with the NS2-E1-E2-NS3 complex through less stable DRMs. Core was also associated with NS2 and the E1E2 complex through these unstable DRMs. We suggest that DRMs carrying this NS2-E1-E2-NS3-4A-NS5A-core complex may play a central role in HCV assembly initiation, potentially as an assembly platform.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Hepacivirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus/fisiología , Línea Celular Tumoral , Detergentes/química , Humanos , Unión Proteica , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA