Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Pain ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39382322

RESUMEN

ABSTRACT: The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of Gi/o-coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. Building on in silico docking simulations, we confirmed that the mast cell stabiliser, cromolyn (CS), and phosphodiesterase inhibitor, zaprinast, are agonists at mouse GPR35, promoting the activation of different Gi/o subunits. Pretreatment with either CS or zaprinast significantly attenuated TRPA1-mediated colonic nociceptor activation and prevented TRPA1-mediated mechanosensitisation. These effects were lost in tissue from GPR35-/- mice and were shown to be mediated by inhibition of TRPA1-evoked substance P (SP) release. This observation highlights the pronociceptive effect of SP and its contribution to TRPA1-mediated colonic nociceptor activation and sensitisation. Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.

2.
EBioMedicine ; 107: 105282, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173527

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a common and debilitating disorder manifesting with abdominal pain and bowel dysfunction. A mainstay of treatment is dietary modification, including restriction of FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols). A greater response to a low FODMAP diet has been reported in those with a distinct IBS microbiome termed IBS-P. We investigated whether this is linked to specific changes in the metabolome in IBS-P. METHODS: Solid phase microextraction gas chromatography-mass spectrometry was used to examine the faecal headspace of 56 IBS cases (each paired with a non-IBS household control) at baseline, and after four-weeks of a low FODMAP diet (39 pairs). 50% cases had the IBS-P microbial subtype, while the others had a microbiome that more resembled healthy controls (termed IBS-H). Clinical response to restriction of FODMAPs was measured with the IBS-symptom severity scale, from which a pain sub score was calculated. FINDINGS: Two distinct metabotypes were identified and mapped onto the microbial subtypes. IBS-P was characterised by a fermentative metabolic profile rich in short chain fatty acids (SCFAs). After FODMAP restriction significant reductions in SCFAs were observed in IBS-P. SCFA levels did not change significantly in the IBS-H group. The magnitude of pain and overall symptom improvement were significantly greater in IBS-P compared to IBS-H (p = 0.016 and p = 0.026, respectively). Using just five metabolites, a biomarker model could predict microbial subtype with accuracy (AUROC 0.797, sensitivity 78.6% (95% CI: 0.78-0.94), specificity 71.4% (95% CI: 0.55-0.88). INTERPRETATION: A metabotype high in SCFAs can be manipulated by restricting fermentable carbohydrate, and is associated with an enhanced clinical response to this dietary restriction. This implies that SCFAs harbour pro-nociceptive potential when produced in a specific IBS niche. By ascertaining metabotype, microbial subtype can be predicted with accuracy. This could allow targeted FODMAP restriction in those seemingly primed to respond best. FUNDING: This research was co-funded by Addenbrooke's Charitable Trust, Cambridge University Hospitals and the Wellcome Sanger Institute, and supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014).


Asunto(s)
Heces , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Síndrome del Colon Irritable/dietoterapia , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/etiología , Humanos , Heces/microbiología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Metaboloma , Oligosacáridos/metabolismo , Monosacáridos/metabolismo , Monosacáridos/análisis , Fermentación , Metabolómica/métodos , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Disacáridos/metabolismo , Disacáridos/análisis , Dieta FODMAP , Polímeros
3.
Neurogastroenterol Motil ; 36(10): e14881, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39078931

RESUMEN

BACKGROUND: Patients (20%-50%) with inflammatory bowel disease (IBD) experience chronic abdominal pain during remission. The clinical features of IBD patients with abdominal pain during remission remain poorly characterized. This cross-sectional pilot study aimed to assess patient recruitment, adherence, and feedback to optimize questionnaires for future use and to determine the clinical features that distinguish IBD patients in remission with and without abdominal pain. METHODS: Online validated questionnaires about disease activity, symptoms, and psychological factors were sent to participants of the UK National Institute for Health and Care Research (NIHR) IBD BioResource, which is a national research platform consisting of re-callable IBD patients designed to expedite research into Crohn's and colitis. Inclusion/exclusion criteria of the IBD BioResource main cohort were applied. Descriptive and inferential statistics were applied to participants in remission. p-values ≤0.01 were considered significant. KEY RESULTS: A total of 2050 patients were approached; 291 (14.2%) of these agreed to participate. In 35 patients, technical problems, length, and poor understanding of the relevance of some questionnaires affected completion as confirmed by feedback. In total, 244 patients were full responders with 122 (50%) in remission; 33 (27%) of these had chronic abdominal pain. Comparison of those with versus without (n = 89) chronic abdominal pain yielded higher scores in patients with pain for the following: somatization (p < 0.001); gastrointestinal symptoms rating scale score (p = <0.001); highly sensitive person scale (p = 0.007); catastrophizing score (p = 0.010). Trends were observed for azathioprine use (p = 0.021); coping resources inventory health in general (p = 0.046); neuroticism (p = 0.019); and poor sleep (p = 0.03). CONCLUSIONS & INFERENCES: Differences in symptoms and psychological characteristics exist between IBD patients in remission with and without abdominal pain. Confirmation of findings in larger studies may facilitate development of personalized chronic pain treatments for IBD patients.


Asunto(s)
Dolor Abdominal , Dolor Crónico , Enfermedades Inflamatorias del Intestino , Humanos , Proyectos Piloto , Estudios Transversales , Masculino , Femenino , Dolor Abdominal/etiología , Dolor Abdominal/psicología , Adulto , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/psicología , Persona de Mediana Edad , Encuestas y Cuestionarios , Dolor Crónico/psicología , Inducción de Remisión , Adulto Joven
4.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G188-G201, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38915279

RESUMEN

The intestinal barrier plays a crucial role in homeostasis by both facilitating the absorption of nutrients and fluids and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared with mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared with mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced prosecretory responses to the nonselective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.NEW & NOTEWORTHY This is the first study to characterize the intestinal function of naked mole-rats. We found that these animals show a robust gut tissue structure, displaying thicker intestinal layers, longer villi, and larger crypts. Naked mole-rats showed more and larger goblet cells, with increased mucus content. Intestinal permeability, especially in the ileum, was substantially lower than that of mice. Finally, naked mole-rats showed reduced intestinal anion secretion in response to serotonin, bradykinin, histamine, capsaicin, and forskolin.


Asunto(s)
Mucosa Intestinal , Ratas Topo , Permeabilidad , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones , Masculino , Células Caliciformes/metabolismo , Células Caliciformes/efectos de los fármacos , Capsaicina/farmacología , Bradiquinina/farmacología , Bradiquinina/metabolismo , Serotonina/metabolismo , Ratones Endogámicos C57BL , Funcion de la Barrera Intestinal
5.
Pain ; 165(8): 1761-1773, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452214

RESUMEN

ABSTRACT: The pressing need for safer, more efficacious analgesics is felt worldwide. Preclinical tests in animal models of painful conditions represent one of the earliest checkpoints novel therapeutics must negotiate before consideration for human use. Traditionally, the pain status of laboratory animals has been inferred from evoked nociceptive assays that measure their responses to noxious stimuli. The disconnect between how pain is tested in laboratory animals and how it is experienced by humans may in part explain the shortcomings of current pain medications and highlights a need for refinement. Here, we survey human patients with chronic pain who assert that everyday aspects of life, such as cleaning and leaving the house, are affected by their ongoing level of pain. Accordingly, we test the impact of painful conditions on an ethological behavior of mice, digging. Stable digging behavior was observed over time in naive mice of both sexes. By contrast, deficits in digging were seen after acute knee inflammation. The analgesia conferred by meloxicam and gabapentin was compared in the monosodium iodoacetate knee osteoarthritis model, with meloxicam more effectively ameliorating digging deficits, in line with human patients finding meloxicam more effective. Finally, in a visceral pain model, the decrease in digging behavior correlated with the extent of disease. Ultimately, we make a case for adopting ethological assays, such as digging, in studies of pain in laboratory animals, which we believe to be more representative of the human experience of pain and thus valuable in assessing clinical potential of novel analgesics in animals.


Asunto(s)
Conducta Animal , Animales , Ratones , Humanos , Masculino , Femenino , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Dolor/tratamiento farmacológico , Dolor/psicología , Dolor/fisiopatología , Analgésicos/uso terapéutico , Analgésicos/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Persona de Mediana Edad , Dimensión del Dolor/métodos , Anciano , Dolor Crónico/psicología , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/fisiopatología , Gabapentina/uso terapéutico , Gabapentina/farmacología , Adulto , Meloxicam/uso terapéutico
6.
Mol Pain ; 20: 17448069241230420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379503

RESUMEN

Ca2+ imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca2+ indicators remains the most common approach to study Ca2+ signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca2+ and ease of use. However, unlike ratiometric indicators, the emission intensity from single-wavelength indicators can be affected by indicator concentration, optical path length, excitation intensity and detector efficiency. As such, without careful calibration, it can be difficult to draw inferences from differences in the magnitude of Ca2+ transients recorded using Fluo4. Here, we show that a method scarcely used in sensory neurophysiology - first proposed by Maravall and colleagues (2000) - can provide reliable estimates of absolute cytosolic Ca2+ concentration ([Ca2+]cyt) in acutely dissociated sensory neurons using Fluo4. This method is straightforward to implement; is applicable to any high-affinity single-wavelength Ca2+ indicator with a large dynamic range; and provides estimates of [Ca2+]cyt in line with other methods, including ratiometric imaging. Use of this method will improve the granularity of sensory neuron Ca2+ imaging data obtained with Fluo4.


Asunto(s)
Calcio , Células Receptoras Sensoriales
7.
Pain ; 165(7): 1592-1604, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38293826

RESUMEN

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.


Asunto(s)
Angiotensina II , Perfilación de la Expresión Génica , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Ratones , Masculino , Femenino , Colon/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Adulto , Persona de Mediana Edad , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Transcriptoma
8.
Adv Mater ; 36(19): e2312735, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290128

RESUMEN

Devices interfacing with biological tissues can provide valuable insights into function, disease, and metabolism through electrical and mechanical signals. However, certain neuromuscular tissues, like those in the gastrointestinal tract, undergo significant strains of up to 40%. Conventional inextensible devices cannot capture the dynamic responses in these tissues. This study introduces electrodes made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polydimethylsiloxane (PDMS) that enable simultaneous monitoring of electrical and mechanical responses of gut tissue. The soft PDMS layers conform to tissue surfaces during gastrointestinal movement. Dopants, including Capstone FS-30 and polyethylene glycol, are explored to enhance the conductivity, electrical sensitivity to strain, and stability of the PEDOT:PSS. The devices are fabricated using shadow masks and solution-processing techniques, providing a faster and simpler process than traditional clean-room-based lithography. Tested on ex vivo mouse colon and human stomach, the device recorded voltage changes of up to 300 µV during contraction and distension consistent with muscle activity, while simultaneously recording resistance changes of up to 150% due to mechanical strain. These devices detect and respond to chemical stimulants and blockers, and can induce contractions through electrical stimulation. They hold great potential for studying and treating complex disorders like irritable bowel syndrome and gastroparesis.


Asunto(s)
Dimetilpolisiloxanos , Poliestirenos , Animales , Ratones , Poliestirenos/química , Humanos , Dimetilpolisiloxanos/química , Contracción Muscular/fisiología , Electrodos , Tracto Gastrointestinal/fisiología , Estómago/fisiología , Colon/fisiología , Conductividad Eléctrica , Polímeros/química , Fenómenos Electrofisiológicos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Tiofenos/química , Tiofenos/farmacología
9.
Adv Mater ; 36(8): e2306679, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061027

RESUMEN

Air liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI. This work presents a flexible all-planar electronic device capable of monitoring barrier formation and perturbations in human respiratory and intestinal cells at ALI. By interrogating patient samples with electrochemical impedance spectroscopy and simple equivalent circuit models, disease-specific and patient-specific signatures are uncovered. Device readouts are validated against commercially available chopstick electrodes and show greater conformability, sensitivity and biocompatibility. The effect of electrode size on sensing efficiency is investigated and a cut-off sensing area is established, which is one order of magnitude smaller than previously reported. This work provides the first steps in creating a physiologically relevant sensor capable of mapping local and real-time changes of epithelial barrier function at ALI, which will have broad applications in toxicology and drug screening applications.


Asunto(s)
Electrónica , Humanos , Electrodos
10.
Adv Sci (Weinh) ; 11(8): e2306727, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38155358

RESUMEN

Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.


Asunto(s)
Intestinos , Organoides , Interacciones Huésped-Patógeno
11.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667839

RESUMEN

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Asunto(s)
Bradiquinina , Carbamatos , Fenilendiaminas , Humanos , Bradiquinina/farmacología , Dolor Abdominal , Adenosina Trifosfato/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
12.
J Neurochem ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906887

RESUMEN

Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal ß3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a ß3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms. Here, ELS was induced using the maternal separation (MS) model, where Sprague Dawley rat pups were separated from their mother in early life (postnatal day 2-12). Visceral hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). CL-316243, a ß3-AR agonist, was administered to determine anti-nociceptive effects against CRD. Distension-induced enteric neuronal activation as well as colonic secretomotor function were assessed. Tryptophan metabolism was determined both centrally and peripherally. For the first time, we showed that CL-316243 significantly ameliorated MS-induced visceral hypersensitivity. Furthermore, MS altered plasma tryptophan metabolism and colonic adrenergic tone, while CL-316243 reduced both central and peripheral levels of tryptophan and affected secretomotor activity in the presence of tetrodotoxin. This study supports the beneficial role of CL-316243 in reducing ELS-induced visceral hypersensitivity, and suggests that targeting the ß3-AR can significantly influence gut-brain axis activity through modulation of enteric neuronal activation, tryptophan metabolism, and colonic secretomotor activity which may synergistically contribute to offsetting the effects of ELS.

13.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G250-G261, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749569

RESUMEN

The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Dolor Visceral , Humanos , Interleucina-13/farmacología , Nociceptores , Proteínas Quinasas p38 Activadas por Mitógenos , Capsaicina/farmacología , Colon/inervación
15.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775903

RESUMEN

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Asunto(s)
Nociceptores , Dolor Visceral , Animales , Capsaicina/farmacología , Ganglios Espinales/metabolismo , Ratones , Nociceptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Canales Catiónicos TRPV/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Dolor Visceral/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Bone ; 158: 116371, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35192969

RESUMEN

Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of about 30 years onwards. Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. Once the concentration of any pathogenic mitochondrial genome variant exceeds a threshold, respiratory chain deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model is a knock-in mutant that expresses a proof-reading-deficient version of PolgA, a nuclear encoded subunit of mtDNA polymerase. These mice are a useful model of age-related accumulation of mtDNA mutations in humans since their defective proof-reading mechanism leads to a mitochondrial DNA mutation rate 3-5 times higher than in wild-type mice. These mice showed enhanced levels of age-related osteoporosis along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts, we developed a protocol and analysis framework for imaging mass cytometry in bone tissue sections to analyse osteoblasts in situ. By comparing bone tissue sampled at one timepoint from femoral neck of 10 older healthy volunteers aged 40-85 with samples from young patients aged 1-19, we have identified complex I defect in osteoblasts from 6 out of 10 older volunteers, complex II defect in 2 out of 10 older volunteers, complex IV defect in 1 out of 10 older volunteers and complex V defect in 4 out of 10 older volunteers. These observations are consistent with findings from the PolgD257A/D257A mouse model and suggest that respiratory chain deficiency, as a consequence of the accumulation of age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón , Humanos , Citometría de Imagen , Ratones , Mitocondrias/metabolismo , Mutación/genética , Osteoblastos/metabolismo
17.
J Environ Qual ; 50(6): 1440-1451, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34647326

RESUMEN

Microbial degradation of subsurface organic contaminants is often hindered by the low availability of both contaminants and nutrients, especially phosphorus (P). The use of activated carbon and traditional P fertilizers to overcome these challenges has proved ineffective; therefore, we sought to find an innovative and effective solution. By heating bone meal-derived organic residues in water in a closed reactor, we synthesized nonporous colloids composed of aromatic and aliphatic structures linked to P groups. X-ray absorption near edge spectroscopy analysis revealed that the materials contain mostly bioavailable forms of P (i.e., adsorbed P and magnesium-bearing brushite). The capacity of the materials to adsorb organic contaminants was investigated using benzene and batch isotherm experiments. The adsorption isotherms were fitted to the linearized Freundlich model; isotherm capacity (logKF ) values for the materials ranged between 1.6 and 2.8 µg g-1 . These results indicate that the colloidal materials have a high affinity for organic contaminants. This, coupled with their possession of bioavailable P, should make them effective amendments for in situ groundwater bioremediation. Also, the materials' chemical properties suggest that they are not recalcitrant, implying that they will not become potential contaminants when released into the environment.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Adsorción , Biodegradación Ambiental , Nutrientes , Contaminantes Químicos del Agua/análisis
18.
Clin Transl Gastroenterol ; 12(2): e00313, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33617189

RESUMEN

INTRODUCTION: Despite heterogeneity, an increased prevalence of psychological comorbidity and an altered pronociceptive gut microenvironment have repeatedly emerged as causative pathophysiology in patients with irritable bowel syndrome (IBS). Our aim was to study these phenomena by comparing gut-related symptoms, psychological scores, and biopsy samples generated from a detailed diarrhea-predominant IBS patient (IBS-D) cohort before their entry into a previously reported clinical trial. METHODS: Data were generated from 42 patients with IBS-D who completed a daily 2-week bowel symptom diary, the Hospital Anxiety and Depression score, and the Patient Health Questionnaire-12 Somatic Symptom score and underwent unprepared flexible sigmoidoscopy. Sigmoid mucosal biopsies were separately evaluated using immunohistochemistry and culture supernatants to determine cellularity, mediator levels, and ability to stimulate colonic afferent activity. RESULTS: Pain severity scores significantly correlated with the daily duration of pain (r = 0.67, P < 0.00001), urgency (r = 0.57, P < 0.0005), and bloating (r = 0.39, P < 0.05), but not with psychological symptom scores for anxiety, depression, or somatization. Furthermore, pain severity scores from individual patients with IBS-D were significantly correlated (r = 0.40, P < 0.008) with stimulation of colonic afferent activation mediated by their biopsy supernatant, but not with biopsy cell counts nor measured mediator levels. DISCUSSION: Peripheral pronociceptive changes in the bowel seem more important than psychological factors in determining pain severity within a tightly phenotyped cohort of patients with IBS-D. No individual mediator was identified as the cause of this pronociceptive change, suggesting that nerve targeting therapeutic approaches may be more successful than mediator-driven approaches for the treatment of pain in IBS-D.


Asunto(s)
Dolor Abdominal/etiología , Vías Aferentes/fisiopatología , Colon Sigmoide/inervación , Síndrome del Colon Irritable/fisiopatología , Adulto , Animales , Ansiedad , Biopsia , Depresión , Diarrea/etiología , Femenino , Mutación con Ganancia de Función , Humanos , Inmunohistoquímica , Mucosa Intestinal/inervación , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/psicología , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.9/genética , Índice de Severidad de la Enfermedad , Sigmoidoscopía
19.
Crohns Colitis 360 ; 3(4): otab073, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36777266

RESUMEN

Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.

20.
Nat Commun ; 11(1): 6331, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303757

RESUMEN

In modern societies, biodegradation of hydrophobic pollutants generated by industry is important for environmental and human health. In Gram-negative bacteria, biodegradation depends on facilitated diffusion of the pollutant substrates into the cell, mediated by specialised outer membrane (OM) channels. Here we show, via a combined experimental and computational approach, that the uptake of monoaromatic hydrocarbons such as toluene in Pseudomonas putida F1 (PpF1) occurs via lateral diffusion through FadL channels. Contrary to classical diffusion channels via which polar substrates move directly into the periplasmic space, PpF1 TodX and CymD direct their hydrophobic substrates into the OM via a lateral opening in the channel wall, bypassing the polar barrier formed by the lipopolysaccharide leaflet on the cell surface. Our study suggests that lateral diffusion of hydrophobic molecules is the modus operandi of all FadL channels, with potential implications for diverse areas such as biodegradation, quorum sensing and gut biology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrocarburos Aromáticos/metabolismo , Proteínas Bacterianas/química , Benceno/metabolismo , Sitios de Unión , Biodegradación Ambiental , Transporte Biológico , Difusión , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA