Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36834557

RESUMEN

African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.


Asunto(s)
Trypanosoma congolense , Tripanosomiasis Africana , Animales , Tripanosomiasis Africana/parasitología , Nucleósidos/uso terapéutico , Tubercidina/uso terapéutico , Adenosina/uso terapéutico , Clonación Molecular
2.
PLoS Negl Trop Dis ; 16(9): e0010779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36170238

RESUMEN

Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.


Asunto(s)
Antiprotozoarios , Leishmania mexicana , Ratones , Animales , Anfotericina B/farmacología , Leishmania mexicana/metabolismo , Nistatina , Albúmina Sérica Bovina/metabolismo , Esteroles , Estrés Oxidativo , Polienos , Transferasas/metabolismo , Glucosa , Ácido Graso Desaturasas/metabolismo , Antiprotozoarios/farmacología
3.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897714

RESUMEN

The study of transporters is highly challenging, as they cannot be isolated or studied in suspension, requiring a cellular or vesicular system, and, when mediated by more than one carrier, difficult to interpret. Nucleoside analogues are important drug candidates, and all protozoan pathogens express multiple equilibrative nucleoside transporter (ENT) genes. We have therefore developed a system for the routine expression of nucleoside transporters, using CRISPR/cas9 to delete both copies of all three nucleoside transporters from Leishmania mexicana (ΔNT1.1/1.2/2 (SUPKO)). SUPKO grew at the same rate as the parental strain and displayed no apparent deficiencies, owing to the cells' ability to synthesize pyrimidines, and the expression of the LmexNT3 purine nucleobase transporter. Nucleoside transport was barely measurable in SUPKO, but reintroduction of L. mexicana NT1.1, NT1.2, and NT2 restored uptake. Thus, SUPKO provides an ideal null background for the expression and characterization of single ENT transporter genes in isolation. Similarly, an LmexNT3-KO strain provides a null background for transport of purine nucleobases and was used for the functional characterization of T. cruzi NB2, which was determined to be adenine-specific. A 5-fluorouracil-resistant strain (Lmex5FURes) displayed null transport for uracil and 5FU, and was used to express the Aspergillus nidulans uracil transporter FurD.


Asunto(s)
Leishmania mexicana , Transporte Biológico , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Leishmania mexicana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nucleósidos/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Uracilo/metabolismo
4.
Front Pharmacol ; 10: 657, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281253

RESUMEN

Control of cutaneous leishmaniasis (CL) in the Americas is dependent on chemotherapy with parenteral pentavalent antimonials. High rates of treatment failure urge the search for predictive and prognostic markers of therapeutic responsiveness. In this study, we aimed to identify biomarkers of therapeutic response during treatment with meglumine antimoniate (MA). We conducted untargeted metabolomic profiling of plasma samples from CL patients (n = 39; 25 who cured and 14 who did not cure), obtained before and at the end of treatment. Exposure to MA induced metabolic perturbations primarily reflecting alteration in long-chain fatty acid ß-oxidation and energy production. Allantoin, N-acetylglutamine, taurine, and pyruvate were significantly more abundant in samples from patients who responded to treatment, and were predictive and prognostic of treatment outcome in this patient cohort (AUC > 0.7). In an ex vivo model of infection, allantoin but not taurine enhanced the MA-dependent killing of intracellular Leishmania (Viannia) panamensis. Our results support the participation of metabolites mediating antioxidant and wound healing responses in clinical cure of CL, revealing relationships between metabolism and immune responses in the outcome of antileishmanial treatment.

5.
Vet Immunol Immunopathol ; 203: 30-39, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30243370

RESUMEN

The study aimed to evaluate clinical signs, blood serum acute phase proteins (APP) and iron dynamics during the acute phase response (APR) of Salmonella Dublin experimentally infected Murrah buffalo calves. Six buffalo calves constituted the control group (CNT) and six were orally inoculate with 108 CFU of S. Dublin (INF). Clinical evaluation was performed, rectal swabs to detect S. Dublin strains were collected and venous blood was sampled before and throughout seven days after inoculation. The APP fractions ß-haptoglobin, α-haptoglobin, ceruloplasmin and transferrin were analyzed by 1-D and 2-D electrophoresis. Proteins were identified using LC/ESI-MS/MS and NCBI database. Plasma fibrinogen, serum iron and serum haptoglobin concentrations were measured. The inoculation of 108 CFU of S. Dublin was effective in inducing clinical signs of Salmonellosis, such as hyperthermia and diarrhea. 1-DE showed that ß and α-haptoglobin increased 204% (p = 0.008) and 184% (p = 0.022) 48 h after inoculation (HAI), respectively, with highest concentrations 120 HAI (498% increased, p = 0.012; 431% increased, p = 0.011) and 168 HAI (492% increased, p = 0.019; 523% increased, p = 0.028). 2-DE showed that the expression of two spots, identified as ß-haptoglobin, were increased 693% (p = 0.0006) and 580% (p = 0.0003) 168 HAI, respectively, while one spot, identified as α-haptoglobin, increased 714% (p = 0.040). Haptoglobin concentrations increased 1339% (p < 0.0001) 168 HAI. 1-DE showed that ceruloplasmin increased 42% (p = 0.034) 48 HAI, with highest concentration 120 HAI (133% increased, p = 0.022). 2-DE showed that the expression of two spots, identified as ceruloplasmin, were increased 218% (p = 0.0153) and 85% (p = 0.0143) 168 HAI, respectively. Fibrinogen increased 78% (p = 0.012) 96 HAI, with highest concentration 120 HAI (increased 114%, p = 0.002). Iron decreased 33% 24 HAI (p = 0.015) and 37% 72 HAI (p = 0.029), and began to be restored 96 HAI. 1-DE showed that transferrin decreased 23% 120 HAI (p = 0.047), and that values were restored 168 HAI. 2-DE showed that expression patterns of transferrin comparing 0 h and 168 HAI were similar, evidencing that values were restored 168 HAI. In conclusion, the inoculation of 108 CFU was effective in inducing hyperthermia and diahrrea. ß and α-haptoglobin, ceruloplasmin and fibrinogen worked as positive APP during the APR to S. Dublin infection and are potential biomarker candidates. Concentrations of iron and transferrin decreased during the infection, highlighting the fact that mechanisms for restricting iron availability are part of the APR triggered against S. Dublin infection in buffalo calves.


Asunto(s)
Proteínas de Fase Aguda/análisis , Búfalos/inmunología , Hierro/sangre , Salmonelosis Animal/inmunología , Salmonella enterica/inmunología , Animales , Búfalos/sangre , Búfalos/microbiología , Ceruloplasmina/análisis , Electroforesis en Gel Bidimensional/veterinaria , Electroforesis en Gel de Poliacrilamida/veterinaria , Fibrinógeno/análisis , Haptoglobinas/análisis , Salmonelosis Animal/sangre , Salmonelosis Animal/microbiología , Transferrina/análisis
6.
Res Vet Sci ; 118: 449-465, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29734122

RESUMEN

The aim of this study was to identify potential disease related proteins in milk whey of lactating buffaloes and blood serum of buffalo calves, in order to define a reference electrophoresis map for 1-DE and 2-DE. Additionally, changes in some protein patterns from buffalo calves during salmonellosis and lactating buffaloes during mastitis are presented. Milk samples were collected and distributed into groups: Milk samples from healthy buffaloes (SCC < 100.000 cells/ml, negative microbiology and CMT) (G1, n = 5) and buffaloes with subclinical mastitis (SCC > 500.000 cells/ml, positive microbiology and CMT) (G2, n = 5). Blood samples from buffalo calves (n = 6) were collected, and three calves were experimentally infected with Salmonella Dublin and samples analyzed before (M0) and 72 h after inoculation (M1). 1-DE was accomplished by loading 10 µg of TP into SDS-PAGE, stained with Coomassie blue. 2-DE was accomplished by loading 200 µg of TP into 11 cm, pH 3-10 non-linear IPG strips, followed by SDS-PAGE, stained with Coomassie blue. Protein bands/spots were excised, subjected to tryptic in-gel digestion and analyzed by LC/ESI-MS/MS. Protein identity was assigned using NCBI databases. After bands/spots from 1-DE and 2-DE were analyzed, a protein map with 35 and 40 different identified proteins in blood serum and milk whey, respectively, was generated. Significant changes in patterns of haptoglobin were observed in buffalo calves with salmonellosis and in patterns of IgLC, ß-lactoglobulin and α-lactalbumin of lactating buffaloes during mastitis. The establishment of a protein map for 1-DE and 2-DE, identifying potential disease related proteins, can help to address alterations during diseases in buffaloes.


Asunto(s)
Búfalos , Mastitis/veterinaria , Leche/química , Suero Lácteo/química , Animales , Búfalos/sangre , Femenino , Lactancia , Mastitis/metabolismo , Suero , Espectrometría de Masas en Tándem
7.
PLoS Pathog ; 14(3): e1006953, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554142

RESUMEN

Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both.


Asunto(s)
Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Metaboloma , Transcetolasa/metabolismo , Virulencia , Animales , Glucólisis , Estadios del Ciclo de Vida , Metabolómica , Ratones , Ratones Endogámicos BALB C , Monocitos/metabolismo , Monocitos/parasitología , Estrés Oxidativo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Eliminación de Secuencia , Transcetolasa/genética
8.
Sci Rep ; 7(1): 16093, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170469

RESUMEN

True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother's metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.


Asunto(s)
Leche/química , Phocidae/inmunología , Phocidae/metabolismo , Adulto , Animales , Proteína C-Reactiva/metabolismo , Calostro/química , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/metabolismo , Modelos Logísticos , Masculino , Persona de Mediana Edad , Embarazo , Factores de Riesgo , Destete
9.
PLoS Negl Trop Dis ; 11(6): e0005649, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28622334

RESUMEN

Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites' genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14α-demethylase (CYP51). The mutation, N176I, is found outside of the enzyme's active site, consistent with the fact that the resistant line continues to produce the enzyme's product. Expression of wild-type sterol 14α-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/farmacología , Resistencia a Medicamentos , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , Mutación Missense , Esterol 14-Desmetilasa/genética , Ergosterol/análisis , Prueba de Complementación Genética , Genoma de Protozoos , Leishmania mexicana/química , Metabolómica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleótido Simple , Esterol 14-Desmetilasa/metabolismo
10.
R Soc Open Sci ; 4(3): 161085, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28405395

RESUMEN

Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general.

11.
Parasitol Int ; 65(5 Pt A): 472-82, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27312997

RESUMEN

Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source.


Asunto(s)
Galactoquinasa/genética , Galactosa/metabolismo , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microcuerpos/metabolismo , Análisis de Secuencia de ADN , Trypanosoma cruzi/crecimiento & desarrollo
12.
R Soc Open Sci ; 2(10): 150395, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26587250

RESUMEN

Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20-30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates.

13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1478-86, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26143919

RESUMEN

Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.


Asunto(s)
Escherichia coli/química , Escherichia coli/metabolismo , Elastasa Pancreática/metabolismo , alfa-Macroglobulinas/química , alfa-Macroglobulinas/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Porcinos
14.
J Antimicrob Chemother ; 69(3): 651-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24235095

RESUMEN

OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.


Asunto(s)
Acuagliceroporinas/metabolismo , Resistencia a Medicamentos , Melarsoprol/metabolismo , Pentamidina/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Alelos , Transporte Biológico , Genes Protozoarios , Análisis de Secuencia de ADN
15.
Mol Microbiol ; 90(1): 114-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23899193

RESUMEN

The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.


Asunto(s)
Carbono/metabolismo , Metabolismo de los Lípidos , Redes y Vías Metabólicas/genética , Treonina/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetatos/metabolismo , Biotransformación , Medios de Cultivo/química , Eliminación de Gen , Glucosa , Espectroscopía de Resonancia Magnética , Genética Inversa , Trypanosoma brucei brucei/genética
16.
J Proteomics ; 88: 47-57, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23590890

RESUMEN

Proteins in milk have wide range of functions, they are carriers of minerals or chemically vulnerable and insoluble vitamins and other compounds, stabilisers of large aggregates or micelles of lipids, and components of both innate and acquired immune defence systems. Together with other components of milk, proteins may also contribute to the selection and establishment of appropriate microbiome in the gut of the infant. The proteome of mammalian milk is now known to be dynamic and changes radically with time after birth from colostrum to mature lactation. Significantly, immune and innate defence proteins appear in milk during infection of the mammary gland and possibly also during systemic infections. The understanding of the human milk proteome and how it changes with time during lactation and in disease is developing rapidly, and is to a large extent informed by proteomics of the milks of non-human mammals, domestic animals in particular. We review general methods now being applied for proteomic analysis of human milk. Moreover we place emphasis on how the milk proteome may change in different ways in response to disease, mastitis in particular, how such changes may be specific to pathogen types, and we give some insights about evolution.


Asunto(s)
Lactancia Materna , Calostro/metabolismo , Lactancia , Mastitis/metabolismo , Proteínas de la Leche/metabolismo , Leche Humana/metabolismo , Proteómica/métodos , Femenino , Humanos , Lactante , Recién Nacido
17.
Mol Microbiol ; 87(2): 412-29, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23170981

RESUMEN

The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.


Asunto(s)
Técnicas de Inactivación de Genes , Leishmania mexicana/genética , Proteínas de Transporte de Monosacáridos/genética , Supresión Genética , Leishmania mexicana/metabolismo , Viabilidad Microbiana , Modelos Biológicos
18.
PLoS Negl Trop Dis ; 6(5): e1618, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563508

RESUMEN

A non-targeted metabolomics-based approach is presented that enables the study of pathways in response to drug action with the aim of defining the mode of action of trypanocides. Eflornithine, a polyamine pathway inhibitor, and nifurtimox, whose mode of action involves its metabolic activation, are currently used in combination as first line treatment against stage 2, CNS-involved, human African trypanosomiasis (HAT). Drug action was assessed using an LC-MS based non-targeted metabolomics approach. Eflornithine revealed the expected changes to the polyamine pathway as well as several unexpected changes that point to pathways and metabolites not previously described in bloodstream form trypanosomes, including a lack of arginase activity and N-acetylated ornithine and putrescine. Nifurtimox was shown to be converted to a trinitrile metabolite indicative of metabolic activation, as well as inducing changes in levels of metabolites involved in carbohydrate and nucleotide metabolism. However, eflornithine and nifurtimox failed to synergise anti-trypanosomal activity in vitro, and the metabolomic changes associated with the combination are the sum of those found in each monotherapy with no indication of additional effects. The study reveals how untargeted metabolomics can yield rapid information on drug targets that could be adapted to any pharmacological situation.


Asunto(s)
Eflornitina/farmacología , Metaboloma , Nifurtimox/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Biotransformación , Cromatografía Liquida/métodos , Interacciones Farmacológicas , Eflornitina/metabolismo , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Nifurtimox/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/química
19.
Future Microbiol ; 6(9): 1037-47, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21958143

RESUMEN

Human African trypanosomiasis or 'sleeping sickness' is a neglected tropical disease caused by the parasite Trypanosoma brucei. A decade of intense international cooperation has brought the incidence to fewer than 10,000 reported cases per annum with anti-trypanosomal drugs, particularly against stage 2 disease where the CNS is involved, being central to control. Treatment failures with melarsoprol started to appear in the 1990s and their incidence has risen sharply in many foci. Loss of plasma membrane transporters involved in drug uptake, particularly the P2 aminopurine transporter and also a transporter termed the high affinity pentamidine transporter, relate to melarsoprol resistance selected in the laboratory. The same two transporters are also responsible for the uptake of the stage 1 drug pentamidine and, to varying extents, other diamidines. However, reports of treatment failures with pentamidine have been rare from the field. Eflornithine (difluoromethylornithine) has replaced melarsoprol as first-line treatment in many regions. However, a need for protracted and complicated drug dosing regimens slowed widespread implementation of eflornithine monotherapy. A combination of eflornithine with nifurtimox substantially decreases the required dose and duration of eflornithine administration and this nifurtimox-eflornithine combination therapy has enjoyed rapid implementation. Unfortunately, selection of resistance to eflornithine in the laboratory is relatively easy (through loss of an amino acid transporter believed to be involved in its uptake), as is selection of resistance to nifurtimox. The first anecdotal reports of treatment failures with eflornithine monotherapy are emerging from some foci. The possibility that parasites resistant to melarsoprol on the one hand, and eflornithine on the other, are present in the field indicates that genes capable of conferring drug resistance to both drugs are in circulation. If new drugs, that act in ways that will not render them susceptible to resistance mechanisms already in circulation do not appear soon, there is also a risk that the current downward trend in Human African trypanosomiasis prevalence will be reversed and, as has happened in the past, the disease will become resurgent, only this time in a form that resists available drugs.


Asunto(s)
Resistencia a Medicamentos , Tripanocidas/farmacología , Trypanosoma/fisiología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Resistencia a Medicamentos/genética , Eflornitina/farmacocinética , Eflornitina/farmacología , Eflornitina/uso terapéutico , Humanos , Proteínas de Transporte de Membrana/metabolismo , Nifurtimox/farmacocinética , Nifurtimox/farmacología , Nifurtimox/uso terapéutico , Pentamidina/metabolismo , Pentamidina/farmacología , Pentamidina/uso terapéutico , Proteínas Protozoarias/metabolismo , Insuficiencia del Tratamiento , Tripanocidas/farmacocinética , Tripanocidas/uso terapéutico , Trypanosoma/efectos de los fármacos , Trypanosoma/metabolismo
20.
Infect Immun ; 79(11): 4332-41, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21896777

RESUMEN

Mannheimia haemolytica is the etiological agent of pneumonic pasteurellosis of cattle and sheep; two different OmpA subclasses, OmpA1 and OmpA2, are associated with bovine and ovine isolates, respectively. These proteins differ at the distal ends of four external loops, are involved in adherence, and are likely to play important roles in host adaptation. M. haemolytica is surrounded by a polysaccharide capsule, and the degree of OmpA surface exposure is unknown. To investigate surface exposure and immune specificity of OmpA among bovine and ovine M. haemolytica isolates, recombinant proteins representing the transmembrane domain of OmpA from a bovine serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were overexpressed, purified, and used to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. Immunogold electron microscopy and immunofluorescence techniques demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked by the polysaccharide capsule, in a selection of M. haemolytica isolates of various serotypes and grown under different growth conditions. To explore epitope specificity, anti-rOmpA1 and anti-rOmpA2 antibodies were cross-absorbed with the heterologous isolate to remove cross-reacting antibodies. These cross-absorbed antibodies were highly specific and recognized only the OmpA protein of the homologous isolate in Western blot assays. A wider examination of the binding specificities of these antibodies for M. haemolytica isolates representing different OmpA subclasses revealed that cross-absorbed anti-rOmpA1 antibodies recognized OmpA1-type proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognized OmpA2-type proteins but not OmpA1-type proteins. Our results demonstrate that OmpA1 and OmpA2 are surface exposed and could potentially bind to different receptors in cattle and sheep.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Epítopos/metabolismo , Mannheimia haemolytica/clasificación , Pasteurelosis Neumónica/microbiología , Enfermedades de las Ovejas/microbiología , Animales , Anticuerpos Antibacterianos/biosíntesis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Bovinos , Epítopos/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Interacciones Huésped-Patógeno , Mannheimia haemolytica/inmunología , Mannheimia haemolytica/metabolismo , Ovinos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA