Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985540

RESUMEN

Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.


Asunto(s)
Caenorhabditis elegans , Cromosomas , Meiosis , Complejo Sinaptonémico , Animales , Meiosis/genética , Caenorhabditis elegans/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Cromosomas/metabolismo , Cromosomas/genética , Segregación Cromosómica , Pez Cebra/genética , Humanos
2.
Biotechnol Prog ; : e3483, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856182

RESUMEN

While high-throughput (HT) experimentation and mechanistic modeling have long been employed in chromatographic process development, it remains unclear how these techniques should be used in concert within development workflows. In this work, a process development workflow based on HT experiments and mechanistic modeling was constructed. The integration of HT and modeling approaches offers improved workflow efficiency and speed. This high-throughput in silico (HT-IS) workflow was employed to develop a Capto MMC polishing step for mAb aggregate removal. High-throughput batch isotherm data was first generated over a range of mobile phase conditions and a suite of analytics were employed. Parameters for the extended steric mass action (SMA) isotherm were regressed for the multicomponent system. Model validation was performed using the extended SMA isotherm in concert with the general rate model of chromatography using the CADET modeling software. Here, step elution profiles were predicted for eight RoboColumn runs across a range of ionic strength, pH, and load density. Optimized processes were generated through minimization of a complex objective function based on key process metrics. Processes were evaluated at lab-scale using two feedstocks, differing in composition. The results confirmed that both processes obtained high monomer yield (>85%) and removed ∼ 50 % $$ \sim 50\% $$ of aggregate species. Column simulations were then carried out to determine sensitivity to a wide range of process inputs. Elution buffer pH was found to be the most critical process parameter, followed by resin ionic capacity. Overall, this study demonstrated the utility of the HT-IS workflow for rapid process development and characterization.

3.
Zebrafish ; 20(6): 229-235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010808

RESUMEN

The longevity of sperm in teleost such as zebrafish and medaka is short when isolated even in saline-balanced solution at a physiological temperature. In contrast, some internal fertilizers exhibit the long-term storage of sperm, >10 months, in the female reproductive tract. This evidence implies that sperm in teleost possesses the ability to survive for a long time under suitable conditions; however, these conditions are not well understood. In this study, we show that the sperm of zebrafish can survive and maintain fertility in L-15-based storage medium supplemented with bovine serum albumin, fetal bovine serum, glucose, and lactic acid for 28 days at room temperature. The fertilized embryos developed to normal fertile adults. This storage medium was effective in medaka sperm stored for 7 days at room temperature. These results suggest that sperm from external fertilizer zebrafish and medaka has the ability to survive for at least 4 and 1 week, respectively, in the body fluid-like medium at a physiological temperature. This sperm storage method allows researchers to ship sperm by low-cost methods and to investigate key factors for motility and fertile ability in those sperm.


Asunto(s)
Oryzias , Preservación de Semen , Masculino , Femenino , Animales , Pez Cebra , Oryzias/fisiología , Temperatura , Semen , Espermatozoides/fisiología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Motilidad Espermática/fisiología
4.
J Chromatogr A ; 1693: 463878, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36827799

RESUMEN

In this work, we have examined an array of isotherm formalisms and characterized them based on their relative complexities and predictive abilities with multimodal chromatography. The set of isotherm models studied were all based on the stoichiometric displacement framework, with considerations for electrostatic interactions, hydrophobic interactions, and thermodynamic activities. Isotherm parameters for each model were first determined through twenty repeated fits to a set of mAb - Capto MMC batch isotherm data spanning a range of loading, ionic strength, and pH as well as a set of mAb - Capto Adhere batch data at constant pH. The batch isotherm data were used in two ways-spanning the full range of loading or consisting of only the high concentration data points. Predictive ability was defined through the model's capacity to capture prominent changes in salt gradient elution behavior with respect to pH for Capto MMC or unique elution patterns and yield losses with respect to gradient slope for Capto Adhere. In both cases, model performance was quantified using a scoring metric based on agreement in peak characteristics for column predictions and accuracy of fit for the batch data. These scores were evaluated for all twenty isotherm fits and their corresponding column predictions, thereby producing a statistical distribution of model performances. Model complexity (number of isotherm parameters) was then considered through use of the Akaike information criterion (AIC) calculated from the score distributions. While model performance for Capto MMC benefitted substantially from removal of low protein concentration data, this was not the case for Capto Adhere; this difference was likely due to the qualitatively different shapes of the isotherms between the two resins. Surprisingly, the top-performing (high accuracy with minimal number of parameters) isotherm model was the same for both resins. The extended steric mass action (SMA) isotherm (containing both protein-salt and protein-protein activity terms) accurately captured both the pH-dependent elution behavior for Capto MMC as well as loss in protein recovery with increasing gradient slope for Capto Adhere. In addition, this isotherm model achieved the highest median score in both resin systems, despite it lacking any explicit hydrophobic stoichiometric terms. The more complex isotherm models, which explicitly accounted for both electrostatic and hydrophobic interaction stoichiometries, were ill-suited for Capto MMC and had lower AIC model likelihoods for Capto Adhere due to their increased complexity. Interestingly, the ability of the extended SMA isotherm to predict the Capto Adhere results was largely due to the protein-salt activity coefficient, as determined via isotherm parameter sensitivity analyses. Further, parametric studies on this parameter demonstrated that it had a major impact on both binding affinity and elution behavior, therein fully capturing the impact of hydrophobic interactions. In summary, we were able to determine the isotherm formalisms most capable of consistently predicting a wide range of column behavior for both a multimodal cation-exchange and multimodal anion-exchange resin with high accuracy, while containing a minimized set of model parameters.


Asunto(s)
Resinas de Intercambio Aniónico , Proteínas , Cromatografía por Intercambio Iónico/métodos , Proteínas/química , Resinas de Intercambio Aniónico/química , Termodinámica
5.
Science ; 377(6610): 1049, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048934

RESUMEN

RNA trailblazer who illuminated splicing mechanics.


Asunto(s)
Genética , Empalme del ARN , Genética/historia , Historia del Siglo XX , Historia del Siglo XXI , Estados Unidos
6.
Dev Cell ; 57(13): 1563-1565, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820392

RESUMEN

During meiosis, microtubules emanate from the centrosome to cluster telomeres in the bouquet configuration and facilitate chromosome pairing. In a recent issue of Science, Mytlis et al. establish that a cilium in zebrafish anchors the centrosome and is important for telomere clustering and germ cell development.


Asunto(s)
Telómero , Pez Cebra , Animales , Emparejamiento Cromosómico , Meiosis/genética , Microtúbulos , Telómero/genética , Pez Cebra/genética
7.
Genetics ; 221(1)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302609

RESUMEN

During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60's C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60's C-terminus.


Asunto(s)
Meiosis , Proteínas de Complejo Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(12): e2115883119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302885

RESUMEN

SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.


Asunto(s)
Cromosomas , Meiosis , Cromosomas/genética , Profase
9.
Front Cell Dev Biol ; 9: 757445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692709

RESUMEN

Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.

10.
PLoS Genet ; 17(6): e1009127, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138874

RESUMEN

During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Oogénesis/fisiología , Espermatogénesis/fisiología , Pez Cebra/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico , Femenino , Genes p53 , Gónadas/anatomía & histología , Masculino , Mutación , Pez Cebra/fisiología , Cohesinas
11.
ACS Nano ; 14(12): 17273-17284, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33226210

RESUMEN

Lipid membranes supported on solid surfaces and nanoparticles find multiple applications in industrial and biomedical technologies. Here, we explore in silico the mechanisms of the interactions of lipid membranes with nanostructured surfaces with deposited nanoparticles and explain the characteristic particle size dependence of the uniformity and stability of lipid coatings observed in vitro. Simulations are performed to demonstrate the specifics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid membrane adhesion to hydrophilic and hydrophobic nanoparticles ranging in size from 1.5 to 40 nm using an original coarse-grained molecular dynamics model with implicit solvent and large simulation boxes (scales up to 280 × 154 × 69 nm3). We find that one of the major factors that affects the uniformity and stability of lipid coatings is the disjoining pressure in the water hydration layer formed between the lipid membrane and hydrophilic solid surface. This effect is accounted for by introducing a special long-range lipid-solid interaction potential that mimics the effects of the disjoining pressure in thin water layers. Our simulations reveal the physical mechanisms of interactions of lipid bilayers with solid surfaces that are responsible for the experimentally observed nonmonotonic particle size dependence of the uniformity and stability of lipid coatings: particles smaller than the hydration layer thickness (<2-3 nm) or larger than ∼20 nm are partially or fully enfolded by a lipid bilayer, whereas particles of the intermediate size (5-20 nm) cause membrane perforation and pore formation. In contrast, hydrophobic nanoparticles, which repel the hydration layer, tend to be encapsulated within the hydrophobic interior of the membrane and coated by the lipid monolayer. The proposed model can be further extended and applied to a wide class of systems comprising nanoparticles and nanostructured substrates interacting with lipid and surfactant bilayers and monolayers.

12.
J Vis Exp ; (157)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32202531

RESUMEN

Meiosis is the key cellular process required to create haploid gametes for sexual reproduction. Model organisms have been instrumental in understanding the chromosome events that take place during meiotic prophase, including the pairing, synapsis, and recombination events that ensure proper chromosome segregation. While the mouse has been an important model for understanding the molecular mechanisms underlying these processes, not all meiotic events in this system are analogous to human meiosis. We recently demonstrated the exciting potential of the zebrafish as a model of human spermatogenesis. Here we describe, in detail, our methods to visualize meiotic chromosomes and associated proteins in chromosome spread preparations. These preparations have the advantage of allowing high resolution analysis of chromosome structures. First, we describe the procedure for dissecting testes from adult zebrafish, followed by cell dissociation, lysis, and spreading of the chromosomes. Next, we describe the procedure for detecting the localization of meiotic chromosome proteins, by immunofluorescence detection, and nucleic acid sequences, by fluorescence in situ hybridization (FISH). These techniques comprise a useful set of tools for the cytological analysis of meiotic chromatin architecture in the zebrafish system. Researchers in the zebrafish community should be able to quickly master these techniques and incorporate them into their standard analyses of reproductive function.


Asunto(s)
Cromosomas/ultraestructura , Meiosis , Espermatocitos/fisiología , Pez Cebra/genética , Animales , Cromatina/metabolismo , Emparejamiento Cromosómico , Segregación Cromosómica , Técnica del Anticuerpo Fluorescente , Hibridación Fluorescente in Situ , Masculino , Testículo/patología
13.
J Colloid Interface Sci ; 561: 58-70, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812867

RESUMEN

Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions. NP-LB interactions are quantified by the free energy landscape calculated by the ghost tweezers method. NPs are studied z of diameter 2 nm (comparable with the LB hydrophobic core), 4 nm (comparable with the LB thickness) and 8 nm (exceeding the LB thickness). NPs are pre-covered by an adsorbed lipid monolayer. It is shown that NP translocation across LB includes (1) NP intake into the hydrophobic core via merging of the monolayer adsorbed on NP with the outer leaflet of bilayer (2) NP release via formation and rupture of a lipid junction connecting NP and LB. Both stages are associated with free energy barriers. The barrier for the intake stage increases with the NP size and becomes prohibitively high for 8 nm NP. The barriers for the release stage are significantly higher which implies that the release stage controls the translocation rate and dynamics. The release energy barrier of 4 nm NP is found smaller than those for 2 and 8 nm NPs which implies the existence of the optimal NP size for unforced trans-membrane transport. Based on the calculated free energy landscape, the dynamics of unforced transport of NP across LB is evaluated using the Fokker-Planck equation, which mimics NP diffusion along the free energy landscape with multiple attempts to reach the barrier. We found that the number of attempts required for successful translocation scales exponentially with the energy barrier.


Asunto(s)
Membrana Celular/metabolismo , Oro/química , Membrana Dobles de Lípidos/metabolismo , Nanopartículas del Metal/química , Adhesividad , Adsorción , Membrana Celular/química , Difusión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular
14.
Sci Rep ; 9(1): 6795, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043625

RESUMEN

The three dimensional organization of genomes remains mostly unknown due to their high degree of condensation. Biophysical studies predict that condensation promotes the topological entanglement of chromatin fibers and the inhibition of function. How organisms balance between functionally active genomes and a high degree of condensation remains to be determined. Here we hypothesize that the Rabl configuration, characterized by the attachment of centromeres and telomeres to the nuclear envelope, helps to reduce the topological entanglement of chromosomes. To test this hypothesis we developed a novel method to quantify chromosome entanglement complexity in 3D reconstructions obtained from Chromosome Conformation Capture (CCC) data. Applying this method to published data of the yeast genome, we show that computational models implementing the attachment of telomeres or centromeres alone are not sufficient to obtain the reduced entanglement complexity observed in 3D reconstructions. It is only when the centromeres and telomeres are attached to the nuclear envelope (i.e. the Rabl configuration) that the complexity of entanglement of the genome is comparable to that of the 3D reconstructions. We therefore suggest that the Rabl configuration is an essential player in the simplification of the entanglement of chromatin fibers.


Asunto(s)
Núcleo Celular/genética , Centrómero/genética , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Núcleo Celular/química , Centrómero/química , Segregación Cromosómica , Imagenología Tridimensional , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS Genet ; 15(1): e1007730, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653507

RESUMEN

Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females.


Asunto(s)
Cromosomas/genética , Endodesoxirribonucleasas/genética , Meiosis/genética , Telómero/genética , Animales , Emparejamiento Cromosómico/genética , Roturas del ADN de Doble Cadena , Desarrollo Embrionario/genética , Femenino , Hibridación Fluorescente in Situ , Masculino , Profase/genética , Espermatocitos/crecimiento & desarrollo , Espermatocitos/metabolismo , Testículo/crecimiento & desarrollo , Testículo/patología , Pez Cebra/genética
16.
J Phys Chem Lett ; 9(17): 4872-4877, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30085675

RESUMEN

Tension-induced rupture of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid membranes with encapsulated hydrophobic nanoparticles is elucidated using dissipative particle dynamics simulations. The dynamics of hole formation is studied, and a nanoparticle size-dependent relationship is established for the probability of membrane rupture within a given time as a function of the membrane tension. Two mechanisms of hole formation are explored: homogeneous nucleation and heterogeneous nucleation at the nanoparticle surface. While the kinetics of homogeneous nucleation in unloaded membranes complies with the predictions of the classical Deryagin-Gutop (DG) theory, the heterogeneous nucleation causes progressively lower lysis tensions as the particle size increases. The thermodynamics of heterogeneous nucleation is treated by introducing an effective contact angle at the three-phase, solvent-membrane-solid boundary into the DG theory. The proposed approach helps quantitatively interpret the simulation results and predict the membrane stability in real experiments with significantly larger (by many orders of magnitude) observation times and spatial scales.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Tamaño de la Partícula , Propiedades de Superficie
17.
Genetics ; 206(3): 1319-1337, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28455351

RESUMEN

Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.


Asunto(s)
Meiosis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Recombinación Homóloga , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
G3 (Bethesda) ; 6(3): 669-82, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26747203

RESUMEN

Errors segregating homologous chromosomes during meiosis result in aneuploid gametes and are the largest contributing factor to birth defects and spontaneous abortions in humans. Saccharomyces cerevisiae has long served as a model organism for studying the gene network supporting normal chromosome segregation. Measuring homolog nondisjunction frequencies is laborious, and involves dissecting thousands of tetrads to detect missegregation of individually marked chromosomes. Here we describe a computational method (TetFit) to estimate the relative contributions of meiosis I nondisjunction and random-spore death to spore inviability in wild type and mutant strains. These values are based on finding the best-fit distribution of 4, 3, 2, 1, and 0 viable-spore tetrads to an observed distribution. Using TetFit, we found that meiosis I nondisjunction is an intrinsic component of spore inviability in wild-type strains. We show proof-of-principle that the calculated average meiosis I nondisjunction frequency determined by TetFit closely matches empirically determined values in mutant strains. Using these published data sets, TetFit uncovered two classes of mutants: Class A mutants skew toward increased nondisjunction death, and include those with known defects in establishing pairing, recombination, and/or synapsis of homologous chromosomes. Class B mutants skew toward random spore death, and include those with defects in sister-chromatid cohesion and centromere function. Epistasis analysis using TetFit is facilitated by the low numbers of tetrads (as few as 200) required to compare the contributions to spore death in different mutant backgrounds. TetFit analysis does not require any special strain construction, and can be applied to previously observed tetrad distributions.


Asunto(s)
Cromosomas Fúngicos , Biología Computacional , Modelos Genéticos , No Disyunción Genética , Saccharomyces cerevisiae/genética , Algoritmos , Biología Computacional/métodos , Genes Fúngicos , Meiosis/genética , Viabilidad Microbiana/genética , Mutación , Esporas Fúngicas
19.
Hum Mol Genet ; 24(24): 7005-16, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26420840

RESUMEN

Mutations in subunits or regulators of cohesin cause a spectrum of disorders in humans known as the 'cohesinopathies'. Cohesinopathies, including the best known example Cornelia de Lange syndrome (CdLS), are characterized by broad spectrum, multifactorial developmental anomalies. Heart defects occur at high frequency and can reach up to 30% in CdLS. The mechanisms by which heart defects occur are enigmatic, but assumed to be developmental in origin. In this study, we depleted cohesin subunit Rad21 by 70-80% in a zebrafish cohesinopathy model. The hearts of Rad21-depleted animals were smaller, often failed to loop, and functioned less efficiently than size-matched controls. Functional deficiency was accompanied by valve defects and reduced ejection fraction. Interestingly, neural crest cells failed to populate the heart and instead exhibited a wandering behavior. Consequently, these cells also failed to condense correctly into pharyngeal arches. Transcriptome analysis revealed that Wnt pathway, chemokine and cadherin genes are dysregulated at the time of cardiac neural crest development. Our results give insight into the etiology of heart defects in the cohesinopathies, and raise the possibility that mild mutations in cohesin genes may be causative of a fraction of congenital heart disease in human populations.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cardiopatías Congénitas/embriología , Cresta Neural/anomalías , Proteínas de Pez Cebra/genética , Animales , Proteínas de Ciclo Celular/deficiencia , Movimiento Celular , Proteínas Cromosómicas no Histona/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Válvulas Cardíacas/anomalías , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Cohesinas
20.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311764

RESUMEN

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Asunto(s)
Corteza Cerebral/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Células Piramidales/metabolismo , Vasodilatación/fisiología , Animales , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA