Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 22(1): 335, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906219

RESUMEN

BACKGROUND: Congenital heart diseases are the major cause of death in newborns, but the genetic etiology of this developmental disorder is not fully known. The conventional approach to identify the disease-causing genes focuses on screening genes that display heart-specific expression during development. However, this approach would have discounted genes that are expressed widely in other tissues but may play critical roles in heart development. RESULTS: We report an efficient pipeline of genome-wide gene discovery based on the identification of a cardiac-specific cis-regulatory element signature that points to candidate genes involved in heart development and congenital heart disease. With this pipeline, we retrieve 76% of the known cardiac developmental genes and predict 35 novel genes that previously had no known connectivity to heart development. Functional validation of these novel cardiac genes by RNAi-mediated knockdown of the conserved orthologs in Drosophila cardiac tissue reveals that disrupting the activity of 71% of these genes leads to adult mortality. Among these genes, RpL14, RpS24, and Rpn8 are associated with heart phenotypes. CONCLUSIONS: Our pipeline has enabled the discovery of novel genes with roles in heart development. This workflow, which relies on screening for non-coding cis-regulatory signatures, is amenable for identifying developmental and disease genes for an organ without constraining to genes that are expressed exclusively in the organ of interest.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Corazón/crecimiento & desarrollo , Animales , Biología Computacional , Drosophila/genética , Drosophila/fisiología , Pruebas Genéticas , Genoma , Genómica , Interferencia de ARN , Elementos Reguladores de la Transcripción , Proteínas Ribosómicas/genética
2.
PLoS Genet ; 10(3): e1004209, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651716

RESUMEN

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.


Asunto(s)
Proteínas de Drosophila/genética , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Receptores Odorantes/genética , Olfato/genética , Animales , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neuronas Receptoras Olfatorias/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores Odorantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA