Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Methods Mol Biol ; 2799: 139-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727906

RESUMEN

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.


Asunto(s)
Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato , Sinapsis , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Técnicas de Placa-Clamp/métodos , Sinapsis/metabolismo , Sinapsis/fisiología , Encéfalo/metabolismo , Encéfalo/citología , Neuronas/metabolismo , Ratones , Ratas , Subunidades de Proteína/metabolismo
2.
Epilepsia ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717560

RESUMEN

OBJECTIVE: Genetic variations in proteins of the mechanistic target of rapamycin (mTOR) pathway cause a spectrum of neurodevelopmental disorders often associated with brain malformations and with intractable epilepsy. The mTORopathies are characterized by hyperactive mTOR pathway and comprise tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type II. How hyperactive mTOR translates into abnormal neuronal activity and hypersynchronous network remains to be better understood. Previously, the role of upregulated GluN2C-containing glutamate-gated N-methyl-D-aspartate receptors (NMDARs) has been demonstrated for germline defects in the TSC genes. Here, we questioned whether this mechanism would expand to other mTORopathies in the different context of a somatic genetic variation of the MTOR protein recurrently found in FCD type II. METHODS: We used a rat model of FCD created by in utero electroporation of neural progenitors of dorsal telencephalon with expression vectors encoding either the wild-type or the pathogenic MTOR variant (p.S2215F). In this mosaic configuration, patch-clamp whole-cell recordings of the electroporated, spiny stellate neurons and extracellular recordings of the electroporated areas were performed in neocortical slices. Selective inhibitors were used to target mTOR activity and GluN2C-mediated currents. RESULTS: Neurons expressing the mutant protein displayed an excessive activation of GluN2C NMDAR-mediated spontaneous excitatory postsynaptic currents. GluN2C-dependent increase in spontaneous spiking activity was detected in the area of electroporated neurons in the mutant condition and was restricted to a critical time window between postnatal days P9 and P20. SIGNIFICANCE: Somatic MTOR pathogenic variant recurrently found in FCD type II resulted in overactivation of GluN2C-mediated neuronal NMDARs in neocortices of rat pups. The related and time-restricted local hyperexcitability was sensitive to subunit GluN2C-specific blockade. Our study suggests that GluN2C-related pathomechanisms might be shared in common by mTOR-related brain disorders.

3.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37566734

RESUMEN

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Transmisión Sináptica , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Transmisión Sináptica/fisiología , Ácido Glutámico/farmacología , Encéfalo/metabolismo
5.
Commun Biol ; 4(1): 59, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420383

RESUMEN

The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.


Asunto(s)
Señalización del Calcio , Disfunción Cognitiva/genética , Epilepsia Refleja/genética , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Aprendizaje por Asociación , Trastorno por Déficit de Atención con Hiperactividad/genética , Hipocampo/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Memoria Espacial
6.
Epilepsia ; 60(7): 1424-1437, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31158310

RESUMEN

OBJECTIVE: Glutamate-gated N-methyl-d-aspartate receptors (NMDARs) are instrumental to brain development and functioning. Defects in the GRIN2A gene, encoding the GluN2A subunit of NMDARs, cause slow-wave sleep (SWS)-related disorders of the epilepsy-aphasia spectrum (EAS). The as-yet poorly understood developmental sequence of early EAS-related phenotypes, and the role of GluN2A-containing NMDARs in the development of SWS and associated electroencephalographic (EEG) activity patterns, were investigated in Grin2a knockout (KO) mice. METHODS: Early social communication was investigated by ultrasonic vocalization (USV) recordings; the relationship of electrical activity of the cerebral cortex with SWS was studied using deep local field potential or chronic EEG recordings at various postnatal stages. RESULTS: Grin2a KO pups displayed altered USV and increased occurrence of high-voltage spindles. The pattern of slow-wave activity induced by low-dose isoflurane was altered in Grin2a KO mice in the 3rd postnatal week and at 1 month of age. These alterations included strong suppression of the delta oscillation power and an increase in the occurrence of the spike-wave bursts. The proportion of SWS and the sleep quality were transiently reduced in Grin2a KO mice aged 1 month but recovered by the age of 2 months. Grin2a KO mice also displayed spontaneous spike-wave discharges, which occurred nearly exclusively during SWS, at 1 and 2 months of age. SIGNIFICANCE: The impaired vocal communication, the spike-wave discharges occurring almost exclusively in SWS, and the age-dependent alteration of SWS that were all seen in Grin2a KO mice matched the sleep-related and age-dependent manifestations seen in children with EAS, hence validating the Grin2a KO as a reliable model of EAS disorders. Our data also show that GluN2A-containing NMDARs are involved in slow-wave activity, and that the period of postnatal brain development (postnatal day 30) when several anomalies peaked might be critical for GluN2A-dependent, sleep-related physiological and pathological processes.


Asunto(s)
Receptores de N-Metil-D-Aspartato/fisiología , Sueño de Onda Lenta/fisiología , Sueño/fisiología , Vocalización Animal , Animales , Animales Recién Nacidos/fisiología , Electroencefalografía , Femenino , Masculino , Ratones/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Vocalización Animal/fisiología
7.
Cereb Cortex ; 29(6): 2424-2436, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771287

RESUMEN

Epidemiological studies have provided contradictory data on the deleterious sequels of cesarean section (C-section) delivery and their links with developmental brain disorders such as Autism Spectrum Disorders. To gain better insight on these issues, we have now compared physiological, morphological, and behavioral parameters in vaginal, term, and preterm C-section delivered mice. We report that C-section delivery does not lead to long-term behavioral alterations though preterm C-section delivery modifies communicative behaviors in pups. Moreover, C-section delivery neither alters the gamma-aminobutyric acid (GABA) developmental excitatory to inhibitory shift nor the frequency or amplitude of glutamatergic and GABAergic postsynaptic currents in hippocampal pyramidal neurons. However, these neurons present an underdeveloped dendritic arbor at birth in pups born by C-section delivery, but this difference disappears 1 day later suggesting an accelerated growth after birth. Therefore, C-section delivery, with prematurity as an aggravating factor, induces transient developmental delays but neither impacts the GABA developmental sequence nor leads to long-term consequences in mice. The deleterious sequels of C-section delivery described in epidemiological studies might be due to a perinatal insult that could be aggravated by C-section delivery.


Asunto(s)
Cesárea/efectos adversos , Discapacidades del Desarrollo/epidemiología , Nacimiento Prematuro , Animales , Conducta Animal/fisiología , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/fisiopatología , Femenino , Masculino , Ratones , Embarazo , Células Piramidales/metabolismo , Células Piramidales/patología
8.
Cereb Cortex ; 29(9): 3982-3992, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30395185

RESUMEN

Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls. The frequency of spontaneous glutamatergic postsynaptic currents is also increased in MIA offspring, as well as the pairwise correlation of the synchronized firing of active cells in CA3. These alterations produced by MIA persist, since at P14-15 GABA action remains depolarizing, produces excitatory action, and network activity remains elevated with a higher frequency of spontaneous glutamatergic postsynaptic currents. Therefore, the pathogenic actions of MIA lead to important morphophysiological and network alterations in the hippocampus already at birth.


Asunto(s)
Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/inmunología , Potenciales de la Membrana , Embarazo/inmunología , Células Piramidales/inmunología , Ácido gamma-Aminobutírico/inmunología , Animales , Región CA3 Hipocampal/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/inmunología , Femenino , Ácido Glutámico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Poli I-C/administración & dosificación , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Miembro 2 de la Familia de Transportadores de Soluto 12/inmunología
9.
Cereb Cortex ; 29(9): 3778-3795, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295710

RESUMEN

Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/-), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/- mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.


Asunto(s)
Adenosina/fisiología , Anticonvulsivantes/administración & dosificación , Fosfatos de Dinucleósidos/administración & dosificación , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Convulsiones/fisiopatología , Animales , Femenino , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Neocórtex/fisiopatología , Neuronas/fisiología , Canales de Potasio/fisiología , Receptor de Adenosina A1/fisiología , Convulsiones/prevención & control , Transducción de Señal/efectos de los fármacos , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
10.
Epilepsia ; 59(10): 1919-1930, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146685

RESUMEN

OBJECTIVE: The epilepsy-aphasia spectrum (EAS) is a heterogeneous group of age-dependent childhood disorders characterized by sleep-activated discharges associated with infrequent seizures and language, cognitive, and behavioral deficits. Defects in the GRIN2A gene, encoding a subunit of glutamate-gated N-methyl-d-aspartate (NMDA) receptors, represent the most important cause of EAS identified so far. Neocortical or thalamic lesions were detected in a subset of severe EAS disorders, and more subtle anomalies were reported in patients with so-called "benign" phenotypes. However, whether brain structural alterations exist in the context of GRIN2A defects is unknown. METHODS: Magnetic resonance diffusion tensor imaging (MR-DTI) was used to perform longitudinal analysis of the brain at 3 developmental timepoints in living mice genetically knocked out (KO) for Grin2a. In addition, electroencephalography (EEG) was recorded using multisite extracellular electrodes to characterize the neocortical activity in vivo. RESULTS: Microstructural alterations were detected in the neocortex, the corpus callosum, the hippocampus, and the thalamus of Grin2a KO mice. Most MR-DTI alterations were detected at a specific developmental stage when mice were aged 30 days, but not at earlier (15 days) or later (2 months) ages. EEG analysis detected epileptiform discharges in Grin2a KO mice in the third postnatal week. SIGNIFICANCE: Grin2a KO mice replicated several anomalies found in patients with EAS disorders. Transient structural alterations detected by MR-DTI recalled the age-dependent course of EAS disorders, which in humans start during childhood and show variable outcome at the onset of adolescence. Together with the epileptiform discharges detected in young Grin2a KO mice, our data suggested the existence of early anomalies in the maturation of the neocortical and thalamocortical systems. Whereas the possible relationship of those anomalies with sleep warrants further investigations, our data suggest that Grin2a KO mice may serve as an animal model to study the neuronal mechanisms of EAS disorders and to design new therapeutic strategies.


Asunto(s)
Encéfalo/patología , Síndrome de Landau-Kleffner/genética , Síndrome de Landau-Kleffner/patología , Mutación/genética , Receptores de N-Metil-D-Aspartato/genética , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Ondas Encefálicas/genética , Electroencefalografía , Genotipo , Procesamiento de Imagen Asistido por Computador , Síndrome de Landau-Kleffner/diagnóstico por imagen , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/diagnóstico por imagen , Trastornos del Neurodesarrollo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Front Mol Neurosci ; 11: 199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988555

RESUMEN

The GluA1 subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) plays a crucial, but highly selective, role in cognitive function. Here we analyzed AMPAR expression, AMPAR distribution and spatial learning in mice (Gria1R/R ), expressing the "trafficking compromised" GluA1(Q600R) point mutation. Our analysis revealed somatic accumulation and reduction of GluA1(Q600R) and GluA2, but only slightly reduced CA1 synaptic localization in hippocampi of adult Gria1R/R mice. These immunohistological changes were accompanied by a strong reduction of somatic AMPAR currents in CA1, and a reduction of plasticity (short-term and long-term potentiation, STP and LTP, respectively) in the CA1 subfield following tetanic and theta-burst stimulation. Nevertheless, spatial reference memory acquisition in the Morris water-maze and on an appetitive Y-maze task was unaffected in Gria1R/R mice. In contrast, spatial working/short-term memory during both spontaneous and rewarded alternation tasks was dramatically impaired. These findings identify the GluA1(Q600R) mutation as a loss of function mutation that provides independent evidence for the selective role of GluA1 in the expression of short-term memory.

12.
Front Cell Neurosci ; 11: 155, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611597

RESUMEN

Genetic variants of the glutamate activated N-methyl-D-aspartate (NMDA) receptor (NMDAR) subunit GluN2A are associated with the hyperexcitable states manifested by epileptic seizures and interictal discharges in patients with disorders of the epilepsy-aphasia spectrum (EAS). The variants found in sporadic cases and families are of different types and include microdeletions encompassing the corresponding GRIN2A gene as well as nonsense, splice-site and missense GRIN2A defects. They are located at different functional domains of GluN2A and no clear genotype-phenotype correlation has emerged yet. Moreover, GluN2A variants may be associated with phenotypic pleiotropy. Deciphering the consequences of pathogenic GRIN2A variants would surely help in better understanding of the underlying mechanisms. This emphasizes the need for functional studies to unravel the basic functional properties of each specific NMDAR variant. In the present study, we have used patch-clamp recordings to evaluate kinetic changes of mutant NMDARs reconstituted after co-transfection of cultured cells with the appropriate expression vectors. Three previously identified missense variants found in patients or families with disorders of the EAS and situated in the N-terminal domain (p.Ile184Ser) or in the ligand-binding domain (p.Arg518His and p.Ala716Thr) of GluN2A were studied in both the homozygous and heterozygous conditions. Relative surface expression and current amplitude were significantly reduced for NMDARs composed of mutant p.Ile184Ser and p.Arg518His, but not p.Ala716His, as compared with wild-type (WT) NMDARs. Amplitude of whole-cell currents was still drastically decreased when WT and mutant p.Arg518His-GluN2A subunits were co-expressed, suggesting a dominant-negative mechanism. Activation times were significantly decreased in both homozygous and heterozygous conditions for the two p.Ile184Ser and p.Arg518His variants, but not for p.Ala716His. Deactivation also significantly increased for p.Ile184Ser variant in the homozygous but not the heterozygous state while it was increased for p.Arg518His in both states. Our data indicate that p.Ile184Ser and p.Arg518His GluN2A variants both impacted on NMDAR function, albeit differently, whereas p.Ala716His did not significantly influence NMDAR kinetics, hence partly questioning its direct and strong pathogenic role. This study brings new insights into the functional impact that GRIN2A variants might have on NMDAR kinetics, and provides a mechanistic explanation for the neurological manifestations seen in the corresponding human spectrum of disorders.

13.
Cell Calcium ; 60(6): 407-414, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27707506

RESUMEN

Suppression of NMDA receptor (NMDAR)-mediated currents by intracellular Ca2+ has been described as a negative feedback loop in NMDAR modulation. In the time scale of tenths of milliseconds the depth of the suppression does not depend on the Ca2+ source. It may be caused by Ca2+ influx through voltage-gated calcium channels, NMDAR channels or release from intracellular stores. However, NMDARs are often co-expressed in synapses with Ca2+-permeable AMPA receptors (AMPARs). Due to significant differences in activation kinetics between these two types of glutamate receptors (GluRs), Ca2+ entry through AMPARs precedes full activation of NMDARs, and therefore, might have an impact on the amplitude of NMDAR-mediated currents. The study of Ca2+-mediated crosstalk between AMPAR and NMDAR in native synapses is challenging due to high NMDAR Ca2+ permeability. Therefore, recombinant Ca2+-permeable AMPAR and Ca2+-impermeable NMDAR mutant channels were co-expressed in HEK 293 cells to examine their interaction. An AMPAR-mediated increase in intracellular Ca2+ concentration ([Ca2+]i) reversibly reduced the size of NMDAR-mediated whole-cell currents. The time course of the NMDAR channel inactivation and recovery from inactivation followed the time course of the [Ca2+]i transient. When brief (1ms) pulses of glutamate were applied to outside-out patches, the degree of NMDAR inactivation increased with the increase in charge carried by the currents through co-activated AMPARs. However, AMPAR-mediated NMDAR inactivation was abolished in the presence of intracellular fast Ca2+ buffer BAPTA or in Ca2+-free extracellular solution. We conclude that Ca2+ entering through AMPARs inactivates co-localized NMDARs in the time range of excitatory postsynaptic currents.


Asunto(s)
Calcio/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Cultivadas , Células HEK293 , Humanos
14.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27030723

RESUMEN

BACKGROUND: A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. RESULTS: The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. CONCLUSIONS: Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation.


Asunto(s)
Fosfatos de Dinucleósidos/uso terapéutico , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Dolor/complicaciones , Dolor/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X3/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Fosfatos de Dinucleósidos/farmacología , Células HEK293 , Humanos , Hiperalgesia/complicaciones , Hiperalgesia/tratamiento farmacológico , Inyecciones Subcutáneas , Masculino , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas Wistar , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
15.
Front Cell Neurosci ; 10: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26858606

RESUMEN

NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca(2+). At the same time, they are themselves inhibited by the elevation of intracellular Ca(2+) concentration. It is unclear however, whether the Ca(2+) entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central neuronal networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca(2+) buffers. Loading of pyramidal cells with exogenous Ca(2+) buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSPs) and prolonged the time window for action potential (AP) generation. Our data indicate that the Ca(2+) influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg(2+) concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca(2+) buffer capacity of postsynaptic neurons.

16.
Curr Opin Pharmacol ; 20: 73-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25498981

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that are expressed throughout the brain and play essential role in brain functioning. Diversity of the subunits and of their spatio-temporal expression imparts distinct functional properties for the particular NMDAR in a particular brain region and developmental stage. Mutations in NMDARs may have pathological consequences and actually lead to various neurological disorders. Recent human genetic studies as highlighted here show the existence of multiple alterations in NMDARs subunits genes in several usual and common brain diseases, such as intellectual disability, autism spectrum disorders (ASD), or epilepsy. Relation of a particular mutation to the corresponding alteration of NMDARs function may provide an avenue to the targeted therapy for the pharmacological treatment of the disorders.


Asunto(s)
Trastornos Mentales/genética , Enfermedades del Sistema Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Encéfalo/fisiología , Encéfalo/fisiopatología , Encefalopatías/tratamiento farmacológico , Encefalopatías/genética , Encefalopatías/fisiopatología , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/fisiopatología , Terapia Molecular Dirigida , Mutación , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología
17.
Cereb Cortex ; 25(9): 2440-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24646614

RESUMEN

Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition.


Asunto(s)
Cannabinoides/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Receptores de GABA/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Cannabinoides/farmacología , GABAérgicos/farmacología , Hipocampo/citología , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transfección
18.
Science ; 346(6206): 176, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25301611

RESUMEN

Bambini-Junior et al. questioned whether our treatment in two rodent models of autism has a long-lasting effect into adulthood. In response, we show that bumetanide treatment around delivery attenuates autistic behavioral features in adult offspring. Therefore, the polarity of γ-aminobutyric acid (GABA) actions during delivery exerts long-lasting priming actions after birth.


Asunto(s)
Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Citoprotección , Oxitocina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Embarazo
19.
Science ; 343(6171): 675-9, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24503856

RESUMEN

We report that the oxytocin-mediated neuroprotective γ-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naïve mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.


Asunto(s)
Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Citoprotección , Oxitocina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Trastorno Autístico/metabolismo , Conducta Animal , Bumetanida/administración & dosificación , Cloruros/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Intercambio Materno-Fetal , Ratones , Parto , Embarazo , Ratas , Ácido Valproico/farmacología
20.
Nat Genet ; 45(9): 1073-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23933818

RESUMEN

Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate the pathogenic role of GRIN2A in 519 probands with epileptic encephalopathies with diverse epilepsy syndromes. We identified four probands with GRIN2A variants that segregated with the disorder in their families. Notably, all four families presented with EAS, accounting for 9% of epilepsy-aphasia cases. We did not detect pathogenic variants in GRIN2A in other epileptic encephalopathies (n = 475) nor in probands with benign childhood epilepsy with centrotemporal spikes (n = 81). We report the first monogenic cause, to our knowledge, for EAS. GRIN2A mutations are restricted to this group of cases, which has important ramifications for diagnostic testing and treatment and provides new insights into the pathogenesis of this debilitating group of conditions.


Asunto(s)
Síndrome de Landau-Kleffner/genética , Mutación , Receptores de N-Metil-D-Aspartato/genética , Electroencefalografía , Femenino , Humanos , Síndrome de Landau-Kleffner/diagnóstico , Masculino , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA