Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 9(5): 1337-43, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11377190

RESUMEN

There is currently interest in the metabolism of the various compounds which make up the vitamin E family, especially with regards to the possible use of vitamin E metabolites as markers of oxidative stress and adequate vitamin E supply. A number of vitamin E metabolites have been described to date and we have recently developed a method to extract and quantitate a range of vitamin E metabolites in human urine. During the development of this method a new metabolite of alpha-tocopherol was identified, which we tentatively characterised as 5-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)-2-methyl-pentanoic acid (alpha-CMBHC).(1) Here we describe the synthesis of alpha-CMBHC as a standard and confirm that it is a metabolite of alpha-tocopherol.


Asunto(s)
Vitamina E/orina , Cromatografía de Gases , Cromatografía de Gases y Espectrometría de Masas , Humanos , Piridinas/síntesis química , Pirimidinas/síntesis química
2.
J Med Chem ; 44(1): 78-93, 2001 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11141091

RESUMEN

Database searching and compound screening identified 1-benzyl-3-(3-dimethylaminopropyloxy)indazole (benzydamine, 3) as a potent activator of the nitric oxide receptor, soluble guanylate cyclase. A comprehensive structure-activity relationship study surrounding 3 clearly showed that the indazole C-3 dimethylaminopropyloxy substituent was critical for enzyme activity. However replacement of the indazole ring of 3 by appropriately substituted pyrazoles maintained enzyme activity. Compounds were evaluated for inhibition of platelet aggregation and showed a general lipophilicity requirement. Aryl-substituted pyrazoles 32, 34, and 43 demonstrated potent activation of soluble guanylate cyclase and potent inhibition of platelet aggregation. Pharmacokinetic studies in rats showed that compound 32 exhibits modest oral bioavailability (12%). Furthermore 32 has an excellent selectivity profile notably showing no significant inhibition of phosphodiesterases or nitric oxide synthases.


Asunto(s)
Guanilato Ciclasa/metabolismo , Indazoles/síntesis química , Óxido Nítrico/metabolismo , Pirazoles/síntesis química , Animales , Activación Enzimática , Humanos , Técnicas In Vitro , Indazoles/química , Indazoles/farmacocinética , Indazoles/farmacología , Masculino , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología , Pirazoles/química , Pirazoles/farmacocinética , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Solubilidad , Relación Estructura-Actividad
3.
Appl Environ Microbiol ; 64(10): 3740-7, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9758793

RESUMEN

The effect of bacterial secretion of an exopolysaccharide (EPS) on rhizosphere soil physical properties was investigated by inoculating strain NAS206, which was isolated from the rhizosphere of wheat (Triticum durum L.) growing in a Moroccan vertisol and was identified as Pantoea aglomerans. Phenotypic identification of this strain with the Biotype-100 system was confirmed by amplified ribosomal DNA restriction analysis. After inoculation of wheat seedlings with strain NAS206, colonization increased at the rhizoplane and in root-adhering soil (RAS) but not in bulk soil. Colonization further increased under relatively dry conditions (20% soil water content; matric potential, -0.55 MPa). By means of genetic fingerprinting using enterobacterial repetitive intergenic consensus PCR, we were able to verify that colonies counted as strain NAS206 on agar plates descended from inoculated strain NAS206. The intense colonization of the wheat rhizosphere by these EPS-producing bacteria was associated with significant soil aggregation, as shown by increased ratios of RAS dry mass to root tissue (RT) dry mass (RAS/RT) and the improved water stability of adhering soil aggregates. The maximum effect of strain NAS206 on both the RAS/RT ratio and aggregate stability was measured at 24% average soil water content (matric potential, -0.20 MPa). Inoculated strain NAS206 improved RAS macroporosity (pore diameter, 10 to 30 &mgr;m) compared to the noninoculated control, particularly when the soil was nearly water saturated (matric potential, -0.05 MPa). Our results suggest that P. agglomerans NAS206 can play an important role in the regulation of the water content (excess or deficit) of the rhizosphere of wheat by improving soil aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA