Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
2.
Gerontology ; : 1-9, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348814

RESUMEN

BACKGROUND: Aging is associated with cellular and tissue responses that collectively lead to functional and structural deterioration of tissues. Poor tissue oxygenation, or hypoxia, is involved in such responses and contributes to aging. Consequently, it could be speculated that living at higher altitude, and therefore in hypoxic conditions, accelerates aging. This assumption is indeed supported by evidence from populations residing at very high altitudes (>3,500 m). In contrast, accumulating evidence suggests that living at moderate altitudes (1,500-2,500 m) is protective rather than injurious, at least for some body systems. SUMMARY: In this review, we critically evaluate the hypothesis that the physiological responses to mild hypoxic stress associated to life at moderate altitudes provide protection from many hypoxia-related diseases through hormesis. Hormesis means that a low dose of a stressor (here hypoxia) elicits beneficial outcomes, while a higher dose can be toxic and might explain at least in part the dose-dependent contrasting effects of hypoxia on the aging processes. The lack of well-designed longitudinal studies focusing on the role of the altitude of residence, and difficulties in accounting for potentially confounding factors such as migration, ethnicity/genetics, and socioeconomic and geoclimatic conditions, currently hampers translation of related research into uncontroversial paradigms. KEY MESSAGES: Deeper investigations are required to understand the impact of altitude-related hypoxia on age-related diseases and to develop molecular markers of ageing/senescence in humans that are linked to hypoxia. However, the presented emerging evidence supports the view that hypoxia conditioning has the potential to improve life quality and expectancy.

3.
Minerva Med ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101381

RESUMEN

Every year millions of people fly to high-altitude destinations. They thereby expose themselves to specific high-altitude conditions. The hypoxic environment (low ambient oxygen availability) constitutes a major factor affecting health and well-being at high altitude. While the oxygen availability is already moderately reduced inside the aircraft cabin, this reduction becomes aggravated when leaving the plane at high-altitude destinations. Especially if not pre-acclimatized, the risk of suffering from high-altitude illnesses, e.g., acute mountain sickness, high-altitude cerebral or pulmonary edema, increases with the level of altitude. In addition, diminished oxygen availability impairs exercise tolerance, which not only limits physical activity at high altitude but may also provoke symptomatic exacerbation of pre-existing diseases. Moreover, the cold and dry ambient air and increased levels of solar radiation may contribute to adverse health effects at higher altitude. Thus, medical pre-examination and pre-flight advice, and proper preparation (pre-acclimatization, exercise training, and potentially adaptation of pharmacological regimes) are of utmost importance to reduce negative health impacts and frustrating travel experiences.

6.
Free Radic Biol Med ; 223: 193-198, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067627

RESUMEN

Supplemental oxygen (hyperoxia) improves physical performance during hypoxic exercise. Based on the analysis of metabolome and iron homeostasis from human athlete blood samples, we show that hyperoxia during recovery periods interferes with metabolic alterations following hypoxic exercise. This may impair beneficial adaptations to exercise and/or hypoxia and highlights risks of oxygen supplementation in hypoxia.


Asunto(s)
Ejercicio Físico , Hiperoxia , Hipoxia , Oxígeno , Humanos , Ejercicio Físico/fisiología , Hipoxia/metabolismo , Hiperoxia/metabolismo , Oxígeno/metabolismo , Masculino , Adaptación Fisiológica , Adulto , Hierro/metabolismo , Metaboloma , Femenino , Atletas , Adulto Joven , Homeostasis , Consumo de Oxígeno
7.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062779

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neuronal plasticity. Here, we investigated the effects of controlled normobaric hypoxia (NH) combined with physical inactivity on BDNF blood levels and executive functions. A total of 25 healthy adults (25.8 ± 3.3 years, 15 female) were analyzed in a randomized controlled cross-over study. Each intervention began with a 30 min resting phase under normoxia (NOR), followed by a 90 min continuation of NOR or NH (peripheral oxygen saturation [SpO2] 85-80%). Serum and plasma samples were collected every 15 min. Heart rate and SpO2 were continuously measured. Before and after each exposure, cognitive tests were performed and after 24 h another follow-up blood sample was taken. NH decreased SpO2 (p < 0.001, ηp2 = 0.747) and increased heart rate (p = 0.006, ηp2 = 0.116) significantly. The 30-min resting phase under NOR led to a significant BDNF reduction in serum (p < 0.001, ηp2 = 0.581) and plasma (p < 0.001, ηp2 = 0.362). Continuation of NOR further significantly reduced BDNF after another 45 min (p = 0.018) in serum and after 30 min (p = 0.040) and 90 min (p = 0.005) in plasma. There was no significant BDNF decline under NH. A 24 h follow-up examination showed a significant decline in serum BDNF, both after NH and NOR. Our results show that NH has the potential to counteract physical inactivity-induced BDNF decline. Therefore, our study emphasizes the need for a physically active lifestyle and its positive effects on BDNF. This study also demonstrates the need for a standardized protocol for future studies to determine BDNF in serum and plasma.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Frecuencia Cardíaca , Hipoxia , Conducta Sedentaria , Humanos , Factor Neurotrófico Derivado del Encéfalo/sangre , Femenino , Masculino , Adulto , Hipoxia/sangre , Estudios Cruzados , Ejercicio Físico , Adulto Joven
8.
High Alt Med Biol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717184

RESUMEN

Alba Camacho-Cardenosa, Marta Camacho-Cardenosa, Johannes Burtscher, Pedro R. Olivares, Guillermo Olcina, and Javier Brazo-Sayavera. Intermittent hypoxic training increases and prolongs exercise benefits in adult untrained women. High Alt Med Biol. 00:00-00, 2024. Background: Exercising in hypoxia may confer multiple health benefits, but the evidence for specific benefits is scarce. Methods: We investigated effects of intermittent hypoxic training (IHT) on the quality of life and functional fitness of healthy adult women, in a double-blind, randomized, placebo-controlled study. Subjects performed 36 sessions of IHT (experimental group, n = 41; fraction of inspired oxygen [FIO2]: 0.17) or the same training in normoxia (control group, n = 41; FIO2: 0.21). Health-related quality of life, fitness tests, and hemoglobin levels were assessed before (T1), directly after (T2), and 4 weeks after (T3) cessation. Results: At T2, upper body strength (+14.96%), lower body strength (+26.20%), and agility (-4.94%) increased significantly in the experimental group compared to baseline but not in controls. The experimental group improved lower body strength more (by 9.85%) than controls at T2 and performed significantly better in walking (by 2.92%) and upper body strength testing (by 16.03%), and agility (by 4.54%) at T3. Perceived general health and vitality was significantly greater in the experimental group at T2 and T3 compared with T1. None of these improvements were observed in the control group. Conclusions: IHT is a promising strategy to induce long-lasting fitness benefits in healthy adult women.

9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731912

RESUMEN

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.


Asunto(s)
Encéfalo , Enfermedad de Huntington , Estilo de Vida , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Ejercicio Físico , Animales , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética
11.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339038

RESUMEN

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína , Trastornos Parkinsonianos/patología , Neuronas Dopaminérgicas/patología , Hipoxia/patología , Oxígeno
14.
Sports Med ; 54(2): 271-287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902936

RESUMEN

Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.


Asunto(s)
Altitud , Hipoxia , Humanos , Femenino , Masculino , Ejercicio Físico/fisiología , Hormonas Esteroides Gonadales , Corazón , Consumo de Oxígeno/fisiología
15.
Ageing Res Rev ; 93: 102147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036102

RESUMEN

Cardinal motor symptoms in Parkinson's disease (PD) include bradykinesia, rest tremor and/or rigidity. This symptomatology can additionally encompass abnormal gait, balance and postural patterns at advanced stages of the disease. Besides pharmacological and surgical therapies, physical exercise represents an important strategy for the management of these advanced impairments. Traditionally, diagnosis and classification of such abnormalities have relied on partially subjective evaluations performed by neurologists during short and temporally scattered hospital appointments. Emerging sports medical methods, including wearable sensor-based movement assessment and computational-statistical analysis, are paving the way for more objective and systematic diagnoses in everyday life conditions. These approaches hold promise to facilitate customizing clinical trials to specific PD groups, as well as personalizing neuromodulation therapies and exercise prescriptions for each individual, remotely and regularly, according to disease progression or specific motor symptoms. We aim to summarize exercise benefits for PD with a specific emphasis on gait and balance deficits, and to provide an overview of recent advances in movement analysis approaches, notably from the sports science community, with value for diagnosis and prognosis. Although such techniques are becoming increasingly available, their standardization and optimization for clinical purposes is critically missing, especially in their translation to complex neurodegenerative disorders such as PD. We highlight the importance of integrating state-of-the-art gait and movement analysis approaches, in combination with other motor, electrophysiological or neural biomarkers, to improve the understanding of the diversity of PD phenotypes, their response to therapies and the dynamics of their disease progression.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Terapia por Ejercicio , Marcha , Progresión de la Enfermedad , Ejercicio Físico
16.
Sports Med ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082199

RESUMEN

The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.

17.
Prog Cardiovasc Dis ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061613

RESUMEN

Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.

18.
NPJ Parkinsons Dis ; 9(1): 161, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062007

RESUMEN

The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.

20.
J Physiol ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860950

RESUMEN

Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA