Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Virol ; 85(14): 7020-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21561908

RESUMEN

The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.


Asunto(s)
Aminoácidos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Subtipo H1N1 del Virus de la Influenza A/química , Virus de la Influenza A/enzimología , Gripe Aviar/virología , Gripe Humana/virología , Animales , Aves , Línea Celular , Femenino , Humanos , Gripe Humana/epidemiología , Ratones , Ratones Endogámicos BALB C
2.
Science ; 327(5964): 425-31, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093466

RESUMEN

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Asunto(s)
Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Aptitud Genética , Redes y Vías Metabólicas , Mutación , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
3.
BMC Genomics ; 9: 336, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18627629

RESUMEN

BACKGROUND: Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. RESULTS: We created a novel glc7 catalytic mutant (glc7-E101Q). Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. CONCLUSION: We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Genes Fúngicos , Proteína Fosfatasa 1/fisiología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
4.
Science ; 320(5882): 1465-70, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18467557

RESUMEN

Protein interactions regulate the systems-level behavior of cells; thus, deciphering the structure and dynamics of protein interaction networks in their cellular context is a central goal in biology. We have performed a genome-wide in vivo screen for protein-protein interactions in Saccharomyces cerevisiae by means of a protein-fragment complementation assay (PCA). We identified 2770 interactions among 1124 endogenously expressed proteins. Comparison with previous studies confirmed known interactions, but most were not known, revealing a previously unexplored subspace of the yeast protein interactome. The PCA detected structural and topological relationships between proteins, providing an 8-nanometer-resolution map of dynamically interacting complexes in vivo and extended networks that provide insights into fundamental cellular processes, including cell polarization and autophagy, pathways that are evolutionarily conserved and central to both development and human health.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Ciclo Celular , Polaridad Celular , Genoma Fúngico , Redes y Vías Metabólicas , Orgánulos/metabolismo , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
PLoS Genet ; 4(4): e1000046, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18404212

RESUMEN

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".


Asunto(s)
Aspergillus fumigatus/genética , Islas Genómicas , Alérgenos/genética , Aspergillus/clasificación , Aspergillus/genética , Aspergillus/fisiología , Aspergillus fumigatus/clasificación , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/fisiología , Cromosomas Fúngicos/genética , Eurotiales/clasificación , Eurotiales/genética , Eurotiales/fisiología , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Genoma Fúngico , Humanos , Filogenia , Especificidad de la Especie , Virulencia/genética
6.
PLoS Pathog ; 3(6): e92, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17604452

RESUMEN

Candida albicans is a prevalent fungal pathogen amongst the immunocompromised population, causing both superficial and life-threatening infections. Since C. albicans is diploid, classical transmission genetics can not be performed to study specific aspects of its biology and pathogenesis. Here, we exploit the diploid status of C. albicans by constructing a library of 2,868 heterozygous deletion mutants and screening this collection using 35 known or novel compounds to survey chemically induced haploinsufficiency in the pathogen. In this reverse genetic assay termed the fitness test, genes related to the mechanism of action of the probe compounds are clearly identified, supporting their functional roles and genetic interactions. In this report, chemical-genetic relationships are provided for multiple FDA-approved antifungal drugs (fluconazole, voriconazole, caspofungin, 5-fluorocytosine, and amphotericin B) as well as additional compounds targeting ergosterol, fatty acid and sphingolipid biosynthesis, microtubules, actin, secretion, rRNA processing, translation, glycosylation, and protein folding mechanisms. We also demonstrate how chemically induced haploinsufficiency profiles can be used to identify the mechanism of action of novel antifungal agents, thereby illustrating the potential utility of this approach to antifungal drug discovery.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Diseño de Fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico , Candida albicans/genética , Candida albicans/metabolismo , ADN de Hongos/análisis , Perfilación de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo
7.
Biochim Biophys Acta ; 1773(7): 1052-61, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17544521

RESUMEN

In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Proteínas Serina-Treonina Quinasas/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/metabolismo , beta Carioferinas/genética , Proteína Exportina 1
8.
Nat Rev Genet ; 8(6): 437-49, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17510664

RESUMEN

The development and application of genetic tools and resources has enabled a partial genetic-interaction network for the yeast Saccharomyces cerevisiae to be compiled. Analysis of the network, which is ongoing, has already provided a clear picture of the nature and scale of the genetic interactions that robustly sustain biological systems, and how cellular buffering is achieved at the molecular level. Recent studies in yeast have begun to define general principles of genetic networks, and also pave the way for similar studies in metazoan model systems. A comparative understanding of genetic-interaction networks promises insights into some long-standing genetic problems, such as the nature of quantitative traits and the basis of complex inherited disease.


Asunto(s)
Saccharomyces cerevisiae/genética , Algoritmos , Mapeo Cromosómico , Diploidia , Epistasis Genética , Eliminación de Gen , Genes Letales , Genoma Fúngico , Genómica , Modelos Genéticos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Microbiol Mol Biol Rev ; 70(2): 317-43, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16760306

RESUMEN

An extracellular matrix composed of a layered meshwork of beta-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Pared Celular/química , Modelos Biológicos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
J Biol Chem ; 281(30): 21445-21457, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16717099

RESUMEN

Although Candida albicans and Saccharomyces cerevisiae express very similar systems of iron uptake, these species differ in their capacity to use heme as a nutritional iron source. Whereas C. albicans efficiently takes up heme, S. cerevisiae grows poorly on media containing heme as the sole source of iron. We identified a gene from C. albicans that would enhance heme uptake when expressed in S. cerevisiae. Overexpression of CaFLC1 (for flavin carrier 1) stimulated the growth of S. cerevisiae on media containing heme iron. In C. albicans, deletion of both alleles of CaFLC1 resulted in a decrease in heme uptake activity, whereas overexpression of CaFLC1 resulted in an increase in heme uptake. The S. cerevisiae genome contains three genes with homology to CaFLC1, and two of these, termed FLC1 and FLC2, also stimulated growth on heme when overexpressed in S. cerevisiae. The S. cerevisiae Flc proteins were detected in the endoplasmic reticulum and the FLC genes encoded an essential function, as strains deleted for either FLC1 or FLC2 were viable, but deletion of both FLC1 and FLC2 was synthetically lethal. FLC gene deletion resulted in pleiotropic phenotypes related to defects in cell wall integrity. High copy suppressors of this synthetic lethality included three mannosyltransferases, VAN1, KTR4, and HOC1. FLC deletion strains exhibited loss of cell wall mannose phosphates, defects in cell wall assembly, and delayed maturation of carboxypeptidase Y. Permeabilized cells lacking FLC proteins exhibited dramatic loss of FAD import activity. We propose that the FLC genes are required for import of FAD into the lumen of the endoplasmic reticulum, where it is required for disulfide bond formation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Flavina-Adenina Dinucleótido/farmacocinética , Regulación Fúngica de la Expresión Génica , Técnicas Genéticas , Hemo/farmacocinética , Alelos , Candida albicans/metabolismo , Catepsina A/metabolismo , Pared Celular/metabolismo , Disulfuros/química , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Biblioteca de Genes , Hemo/química , Saccharomyces cerevisiae/metabolismo
13.
J Biol ; 4(2): 6, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15982408

RESUMEN

BACKGROUND: Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. RESULTS: To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products) and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' -- classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions -- the 'compensatory complexes' theme. Thematic maps -- networks rendered in terms of such themes -- can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. CONCLUSION: Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Genoma , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Integración de Sistemas
14.
BMC Genet ; 6: 8, 2005 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-15715908

RESUMEN

BACKGROUND: In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. RESULTS: Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. CONCLUSION: Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.


Asunto(s)
Quitina/biosíntesis , Complejos Multienzimáticos/genética , Saccharomyces cerevisiae/genética , Pared Celular/genética , Quitina Sintasa/genética , Mutación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
15.
Eukaryot Cell ; 3(6): 1423-32, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15590817

RESUMEN

The UDP-glucose:glycoprotein glucosyltransferase (UGGT) is an endoplasmic reticulum sensor for quality control of glycoprotein folding. Saccharomyces cerevisiae is the only eukaryotic organism so far described lacking UGGT-mediated transient reglucosylation of N-linked oligosaccharides. The only gene in S. cerevisiae with similarity to those encoding UGGTs is KRE5. S. cerevisiae KRE5 deletion strains show severely reduced levels of cell wall beta-1,6-glucan polymer, aberrant morphology, and extremely compromised growth or lethality, depending on the strain background. Deletion of both alleles of the Candida albicans KRE5 gene gives rise to viable cells that are larger than those of the wild type (WT), tend to aggregate, have enlarged vacuoles, and show major cell wall defects. C. albicans kre5/kre5 mutants have significantly reduced levels of beta-1,6-glucan and more chitin and beta-1,3-glucan and less mannoprotein than the WT. The remaining beta-1,6-glucan, about 20% of WT levels, exhibits a beta-1,6-endoglucanase digestion pattern, including a branch point-to-linear stretch ratio identical to that of WT strains, suggesting that Kre5p is not a beta-1,6-glucan synthase. C. albicans KRE5 is a functional homologue of S. cerevisiae KRE5; it partially complements both the growth defect and reduced cell wall beta-1,6-glucan content of S. cerevisiae kre5 viable mutants. C. albicans kre5/kre5 homozygous mutant strains are unable to form hyphae in several solid and liquid media, even in the presence of serum, a potent inducer of the dimorphic transition. Surprisingly the mutants do form hyphae in the presence of N-acetylglucosamine. Finally, C. albicans KRE5 homozygous mutant strains exhibit a 50% reduction in adhesion to human epithelial cells and are completely avirulent in a mouse model of systemic infection.


Asunto(s)
Candida albicans/genética , Candida albicans/patogenicidad , Pared Celular/metabolismo , Glicoproteínas/genética , Glicoproteínas/fisiología , Hifa/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Alelos , Animales , Proliferación Celular , Quitina/metabolismo , Células Epiteliales/microbiología , Eliminación de Gen , Prueba de Complementación Genética , Glucosiltransferasas/metabolismo , Homocigoto , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Mutación , Oligosacáridos/química , Filogenia , Saccharomyces cerevisiae/metabolismo , Sensibilidad y Especificidad , Temperatura , Factores de Tiempo , Virulencia
16.
Curr Opin Microbiol ; 7(6): 617-23, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15556034

RESUMEN

The fungal cell wall field, traditionally focused on polysaccharide composition and synthesis, retains a certain static architectural imagery of structural rigidity and integrity, with the wall offering protection from a harsh environment. This picture of the wall is increasingly changing to that of a bustling construction site, as research uncovers the organizational complexity of its assembly. With recent molecular and genomic studies on Saccharomyces cerevisiae, cell wall synthesis and biology appear increasingly to be dynamic and adaptable processes that are fully integrated with the underlying cytoskeletal and polarity machinery that drive cell cycle progression.


Asunto(s)
Ciclo Celular/fisiología , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 101(44): 15682-7, 2004 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-15496468

RESUMEN

Genetic interactions define overlapping functions and compensatory pathways. In particular, synthetic sick or lethal (SSL) genetic interactions are important for understanding how an organism tolerates random mutation, i.e., genetic robustness. Comprehensive identification of SSL relationships remains far from complete in any organism, because mapping these networks is highly labor intensive. The ability to predict SSL interactions, however, could efficiently guide further SSL discovery. Toward this end, we predicted pairs of SSL genes in Saccharomyces cerevisiae by using probabilistic decision trees to integrate multiple types of data, including localization, mRNA expression, physical interaction, protein function, and characteristics of network topology. Experimental evidence demonstrated the reliability of this strategy, which, when extended to human SSL interactions, may prove valuable in discovering drug targets for cancer therapy and in identifying genes responsible for multigenic diseases.


Asunto(s)
Modelos Genéticos , Mutación , Fenotipo , Animales , Bases de Datos Genéticas , Árboles de Decisión , Genotipo , Modelos Estadísticos
18.
Yeast ; 21(13): 1121-31, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15484287

RESUMEN

(1 --> 6)-beta-D-glucan is a key cell wall component of Saccharomyces cerevisiae and Candida albicans. Many genes are known to affect the levels or structure of this glucan, but their roles and a molecular description of the synthesis of (1 --> 6)-beta-D-glucan remain to be established and a method to measure (1 --> 6)-beta-D-glucan synthase activity in vitro would provide an enabling tool. Here, conditions for the detection of in vitro synthesis of this polymer are described. Crude membrane preparations from S. cerevisiae were isolated, and incubated in the presence of UDP-glucose and GTP. With anti-(1 --> 6)-beta-D-glucan-specific antibodies, a time-dependent increase in the amount of this glucan was demonstrated in a dot-blot assay, or through an inhibition enzyme immunoassay. Antibody specificity was validated by competition experiments using pustulan, a (1 --> 6)-beta-D-glucan, laminarin, a (1 --> 3)-beta-D-glucan, yeast mannan and glycogen. The identity of the reaction product was also demonstrated by its sensitivity to a recombinant (1 --> 6)-beta-D-glucanase. Extracts from mutants in 10 genes with a wide range of altered cell wall (1 --> 6)-beta-D-glucan levels were assayed for in vitro synthesis of the polymer. A strong correlation of in vitro synthase activity with in vivo glucan levels was found, providing genetic support for the specificity of the assay. The basis for the GTP-dependence of the synthase reaction was studied. Extracts from rho2, rho3, rho4 and rho5 null mutants had wild-type in vitro activity. In contrast, Rho1p overproduction led to increased in vitro synthesis, implicating Rho1p in the regulation of (1 --> 6)-beta-D-glucan synthesis.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , Western Blotting/métodos , Glucosiltransferasas/metabolismo , Técnicas para Inmunoenzimas/métodos , beta-Glucanos/análisis
19.
Genetics ; 167(1): 35-49, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15166135

RESUMEN

Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.


Asunto(s)
Péptidos Cíclicos/farmacología , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/química , Antifúngicos/farmacología , Bioquímica/métodos , Transporte Biológico , Caspofungina , Ciclo Celular , Supervivencia Celular , Pared Celular/química , Quitina/química , Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica , Resistencia a Múltiples Medicamentos , Equinocandinas , Eliminación de Gen , Genes Fúngicos , Genotipo , Glucanos/química , Glucanos/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Haploidia , Iones , Lipopéptidos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos Cíclicos/química , Fenotipo , Unión Proteica , Proteínas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción , Transcripción Genética , Ubiquitina/metabolismo , beta-Glucanos/metabolismo
20.
Science ; 303(5659): 808-13, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14764870

RESUMEN

A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.


Asunto(s)
Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Fibrosis Quística/genética , Eliminación de Gen , Genes Esenciales , Enfermedades Genéticas Congénitas/genética , Genotipo , Humanos , Datos de Secuencia Molecular , Herencia Multifactorial , Mutación , Fenotipo , Polimorfismo Genético , Retinitis Pigmentosa/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA