RESUMEN
Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.
Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Genética de Población , Malaria , Repeticiones de Microsatélite , Mosquitos Vectores , Anopheles/genética , Animales , Mosquitos Vectores/genética , Malaria/transmisión , Tecnología de Genética Dirigida/métodos , Melanesia , AlelosRESUMEN
The dengue mosquito, Aedes aegypti (Linnaeus, 1762), is a highly invasive and medically significant vector of dengue, yellow fever, chikungunya and Zika viruses, whose global spread can be attributed to increased globalization in the 15th through 20th century. Records of the invasion history of Ae. aegypti across Southeast Asia are sparse and there is little knowledge regarding the invasion routes that the species exploited to gain a foothold in the Indo-Pacific. Likewise, a broad and geographically thorough investigation of Ae. aegypti population genetics in the Indo-Pacific is lacking, despite this region being highly impacted by diseases transmitted by this species. We assess 11 nuclear microsatellites and mitochondrial COI sequences, coupled with widespread sampling through the Indo-Pacific region to characterise population structure at a broad geographic scale. We also perform a comprehensive literature search to collate documentation of the first known records of Ae. aegypti at various locations in the Indo-Pacific. We revealed additional spatial population genetic structure of Ae. aegypti in Southeast Asia, the Indo-Pacific and Australasia compared with previous studies and find differentiation between multiple Queensland and Torres Strait Islands populations. We also detected additional genetic breaks within Australia, Indonesia and Malaysia. Characterising the structure of previously unexplored populations through this region enhances the understanding of the population structure of Ae. aegypti in Australasia and Southeast Asia and may assist predictions of future mosquito movement, informing control strategies as well as assessing the risk of new invasion pathways.
RESUMEN
BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range. METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source. CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.
Asunto(s)
Aedes/clasificación , Aedes/crecimiento & desarrollo , Variación Genética , Aedes/genética , Animales , Asia Sudoriental , Australasia , Complejo IV de Transporte de Electrones/genética , Indonesia , Repeticiones de Microsatélite , Islas del Pacífico , Análisis de Secuencia de ADN , Análisis Espacio-TemporalRESUMEN
PROBLEM: The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. CONTEXT: In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. ACTION: The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. OUTCOME: Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. DISCUSSION: Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.
Asunto(s)
Brotes de Enfermedades/prevención & control , Inundaciones , Medición de Riesgo/métodos , Aedes/crecimiento & desarrollo , Animales , Dengue/epidemiología , Dengue/prevención & control , Desastres , Humanos , Insectos Vectores/crecimiento & desarrollo , Malaria/epidemiología , Malaria/prevención & control , Melanesia/epidemiología , Organización Mundial de la Salud/organización & administraciónRESUMEN
BACKGROUND: The north coast of Guadalcanal has some of the most intense malaria transmission in the Solomon Islands. And, there is a push for intensified vector control in Guadalcanal, to improve the livelihood of residents and to minimize the number of cases, which are regularly exported to the rest of the country. Therefore, the bionomics of the target vector, Anopheles farauti, was profiled in 2007-08; which was after 20 years of limited surveillance during which time treated bed nets (ITNs) were distributed in the area. METHODS: In three villages on northern Guadalcanal, blood-seeking female mosquitoes were caught using hourly human landing catches by four collectors, two working indoors and two outdoors, from 18.00-06.00 for at least two nights per month from July 2007 to June 2008. The mosquitoes were counted, identified using morphological and molecular markers and dissected to determine parity. RESULTS: Seasonality in vector densities was similar in the three villages, with a peak at the end of the drier months (October to December) and a trough at the end of the wetter months (March to May). There was some variability in endophagy (indoor biting) and nocturnal biting (activity during sleeping hours) both spatially and temporally across the longitudinal dataset. The general biting pattern was consistent throughout all sample collections, with the majority of biting occurring outdoors (64%) and outside of sleeping hours (65%). Peak biting was 19.00-20.00. The proportion parous across each village ranged between 0.54-0.58. Parity showed little seasonal trend despite fluctuations in vector densities over the year. CONCLUSION: The early, outdoor biting behaviour of An. farauti documented 20 years previously on north Guadalcanal was still exhibited. It is possible that bed net use may have maintained this biting profile though this could not be determined unequivocally. The longevity of these populations has not changed despite long-term ITN use. This early, outdoor biting behaviour led to the failure of the eradication programme and is likely responsible for the continued transmission in Guadalcanal following the introduction of ITNs. Other vector control strategies which do not rely on the vector entering houses are needed if elimination or intensified control is to be achieved.
Asunto(s)
Anopheles/crecimiento & desarrollo , Ecosistema , Insectos Vectores , Control de Mosquitos/métodos , Animales , Anopheles/anatomía & histología , Anopheles/clasificación , Anopheles/genética , Conducta Alimentaria , Femenino , Humanos , Longevidad , Malaria/prevención & control , Melanesia , Estaciones del AñoRESUMEN
BACKGROUND: The main vector of malaria in Solomon Islands is Anopheles farauti, which has a mainly coastal distribution. In Northern Guadalcanal, Solomon Islands, high densities of An. farauti are supported by large brackish streams, which in the dry season are dammed by localized sand migration. The factors controlling the high larval productivity of these breeding sites have not been identified. Accordingly the influence of environmental factors on the presence and density of An. farauti larvae was assessed in three large naturally dammed streams. METHODS: Larval sites were mapped and anopheline larvae were collected monthly for 12 months (July 2007 to June 2008) from three streams using standard dippers. Larval collections were made from 10 locations spaced at 50 m intervals along the edge of each stream starting from the coast. At each collection point, floating filamentous algae, aquatic emergent plants, sun exposure, and salinity were measured. These environmental parameters along with rainfall were correlated with larval presence and density. RESULTS: The presence and abundance of An. farauti larvae varied between streams and was influenced by the month of collection, and distance from the ocean (p <0.001). Larvae were more frequently present and more abundant within 50 m of the ocean during the dry season when the streams were dammed. The presence and density of larvae were positively associated with aquatic emergent plants (presence: p = 0.049; density: p = 0.001). Although filamentous algae did not influence the presence of larvae, this factor did significantly influence the density of larvae (p < 0.001). Rainfall for the month prior to sampling was negatively associated with both larval presence and abundance (p < 0.001), as high rainfall flushed larvae from the streams. Salinity significantly influenced both the presence (p = 0.002) and density (p = 0.014) of larvae, with larvae being most present and abundant in brackish water at < 10 seawater. CONCLUSION: This study has demonstrated that the presence and abundance An. farauti larvae are influenced by environmental factors within the large streams. Understanding these parameters will allow for targeted cost effective implementation of source reduction and larviciding to support the frontline malaria control measures i.e. indoor residual spraying (IRS) and distribution of long-lasting insecticidal nets (LLINs).
Asunto(s)
Anopheles/crecimiento & desarrollo , Vectores de Enfermedades , Ecosistema , Animales , Larva/crecimiento & desarrollo , Melanesia , Desarrollo de la Planta , Ríos , Salinidad , Luz Solar , AguaRESUMEN
BACKGROUND: In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. METHODS: In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. RESULTS: Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. CONCLUSION: In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the effectiveness of IRS and the personal protection provided by bed nets is compromised. To achieve elimination, any residual transmission should be targeted using integrated vector control incorporating complementary tools such as larviciding and/or zooprophylaxis.