Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447841

RESUMEN

Timely data quality assessment has been shown to be crucial for the development of IoT-based applications. Different IoT applications' varying data quality requirements pose a challenge, as each application requires a unique data quality process. This creates scalability issues as the number of applications increases, and it also has financial implications, as it would require a separate data pipeline for each application. To address this challenge, this paper proposes a novel approach integrating fusion methods into end-to-end data quality assessment to cater to different applications within a single data pipeline. By using real-time and historical analytics, the study investigates the effects of each fusion method on the resulting data quality score and how this can be used to support different applications. The study results, based on two real-world datasets, indicate that Kalman fusion had a higher overall mean quality score than Adaptive weighted fusion and Naïve fusion. However, Kalman fusion also had a higher computational burden on the system. The proposed solution offers a flexible and efficient approach to addressing IoT applications' diverse data quality needs within a single data pipeline.

2.
Softw Pract Exp ; 49(7): 1055-1078, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31423028

RESUMEN

Internet of Things (IoT), fog computing, cloud computing, and data-driven techniques together offer a great opportunity for verticals such as dairy industry to increase productivity by getting actionable insights to improve farming practices, thereby increasing efficiency and yield. In this paper, we present SmartHerd, a fog computing-assisted end-to-end IoT platform for animal behavior analysis and health monitoring in a dairy farming scenario. The platform follows a microservices-oriented design to assist the distributed computing paradigm and addresses the major issue of constrained Internet connectivity in remote farm locations. We present the implementation of the designed software system in a 6-month mature real-world deployment, wherein the data from wearables on cows is sent to a fog-based platform for data classification and analysis, which includes decision-making capabilities and provides actionable insights to farmer towards the welfare of animals. With fog-based computational assistance in the SmartHerd setup, we see an 84% reduction in amount of data transferred to the cloud as compared with the conventional cloud-based approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA