Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO Rep ; 24(11): e57227, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37795949

RESUMEN

Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Femenino , Animales , Huso Acromático/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Meiosis/genética , Oocitos , Cromátides , Aneuploidia , Segregación Cromosómica , Mamíferos/genética
2.
Front Med (Lausanne) ; 9: 981074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388913

RESUMEN

Tertiary lymphoid structures (TLS) are specialized lymphoid formations that serve as local repertoire of T- and B-cells at sites of chronic inflammation, autoimmunity, and cancer. While presence of TLS has been associated with improved response to immune checkpoint blockade therapies and overall outcomes in several cancers, its prognostic value in basal cell carcinoma (BCC) has not been investigated. Herein, we determined the prognostic impact of TLS by relating its prevalence and maturation with outcome measures of anti-tumor immunity, namely tumor infiltrating lymphocytes (TILs) and tumor killing. In 30 distinct BCCs, we show the presence of TLS was significantly enriched in tumors harboring a nodular component and more mature primary TLS was associated with TIL counts. Moreover, assessment of the fibrillary matrix surrounding tumors showed discrete morphologies significantly associated with higher TIL counts, critically accounting for heterogeneity in TIL count distribution within TLS maturation stages. Specifically, increased length of fibers and lacunarity of the matrix with concomitant reduction in density and alignment of fibers were present surrounding tumors displaying high TIL counts. Given the interest in inducing TLS formation as a therapeutic intervention as well as its documented prognostic value, elucidating potential impediments to the ability of TLS in driving anti-tumor immunity within the tumor microenvironment warrants further investigation. These results begin to address and highlight the need to integrate stromal features which may present a hindrance to TLS formation and/or effective function as a mediator of immunotherapy response.

3.
Nat Commun ; 13(1): 5312, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085288

RESUMEN

Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Humanos , Factores Inmunológicos , Inflamación , Fenotipo
4.
EMBO J ; 41(2): e109445, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931323

RESUMEN

Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.


Asunto(s)
Diferenciación Celular , Epigenoma , Células Madre Embrionarias de Ratones/metabolismo , Animales , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos DBA , Células Madre Embrionarias de Ratones/citología , Secuencias Reguladoras de Ácidos Nucleicos
5.
Cell Stem Cell ; 27(3): 459-469.e8, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795400

RESUMEN

Mouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs. We map thousands of loci affecting chromatin accessibility and/or transcript abundance, including 10 QTL hotspots where genetic variation at a single locus coordinates the regulation of genes throughout the genome. For one hotspot, we identify a single enhancer variant ∼10 kb upstream of Lifr associated with chromatin accessibility and mediating a cascade of molecular events affecting pluripotency. We validate causation through reciprocal allele swaps, demonstrating the functional consequences of noncoding variation in gene regulatory networks that stabilize pluripotent states in vitro.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Animales , Diferenciación Celular , Cromatina/genética , Expresión Génica , Variación Genética , Glucógeno Sintasa Quinasa 3 , Ratones
6.
J Cell Biol ; 218(4): 1148-1163, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30733233

RESUMEN

Chromosome alignment at the equator of the mitotic spindle is a highly conserved step during cell division; however, its importance to genomic stability and cellular fitness is not understood. Normal mammalian somatic cells lacking KIF18A function complete cell division without aligning chromosomes. These alignment-deficient cells display normal chromosome copy numbers in vitro and in vivo, suggesting that chromosome alignment is largely dispensable for maintenance of euploidy. However, we find that loss of chromosome alignment leads to interchromosomal compaction defects during anaphase, abnormal organization of chromosomes into a single nucleus at mitotic exit, and the formation of micronuclei in vitro and in vivo. These defects slow cell proliferation and are associated with impaired postnatal growth and survival in mice. Our studies support a model in which the alignment of mitotic chromosomes promotes proper organization of chromosomes into a single nucleus and continued proliferation by ensuring that chromosomes segregate as a compact mass during anaphase.


Asunto(s)
Anafase , Segregación Cromosómica , Cromosomas Humanos , Huso Acromático/fisiología , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/fisiología , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Ratones Noqueados , Epitelio Pigmentado de la Retina/fisiología , Huso Acromático/genética , Huso Acromático/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
PLoS One ; 10(5): e0125897, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933409

RESUMEN

Alzheimer's disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice-70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Progresión de la Enfermedad , Convulsiones/complicaciones , Convulsiones/patología , Envejecimiento/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cromosomas de los Mamíferos/genética , Complemento C5/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Microglía/patología , Mutagénesis Insercional , Neuronas/patología , Fenotipo , Placa Amiloide/patología , Presenilinas/metabolismo , Transgenes
8.
Genome Res ; 25(7): 948-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25917818

RESUMEN

Spontaneously arising mouse mutations have served as the foundation for understanding gene function for more than 100 years. We have used exome sequencing in an effort to identify the causative mutations for 172 distinct, spontaneously arising mouse models of Mendelian disorders, including a broad range of clinically relevant phenotypes. To analyze the resulting data, we developed an analytics pipeline that is optimized for mouse exome data and a variation database that allows for reproducible, user-defined data mining as well as nomination of mutation candidates through knowledge-based integration of sample and variant data. Using these new tools, putative pathogenic mutations were identified for 91 (53%) of the strains in our study. Despite the increased power offered by potentially unlimited pedigrees and controlled breeding, about half of our exome cases remained unsolved. Using a combination of manual analyses of exome alignments and whole-genome sequencing, we provide evidence that a large fraction of unsolved exome cases have underlying structural mutations. This result directly informs efforts to investigate the similar proportion of apparently Mendelian human phenotypes that are recalcitrant to exome sequencing.


Asunto(s)
Exoma , Mutación , Animales , Femenino , Enfermedades Genéticas Congénitas/genética , Ligamiento Genético , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Fenotipo , Reproducibilidad de los Resultados
9.
Dev Biol ; 402(2): 253-262, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25824710

RESUMEN

Genome integrity in the developing germ line is strictly required for fecundity. In proliferating somatic cells and in germ cells, there are mitotic checkpoint mechanisms that ensure accurate chromosome segregation and euploidy. There is growing evidence of mitotic cell cycle components that are uniquely required in the germ line to ensure genome integrity. We previously showed that the primary phenotype of germ cell deficient 2 (gcd2) mutant mice is infertility due to germ cell depletion during embryogenesis. Here we show that the underlying mutation is a mis-sense mutation, R308K, in the motor domain of the kinesin-8 family member, KIF18A, a protein that is expressed in a variety of proliferative tissues and is a key regulator of chromosome alignment during mitosis. Despite the conservative nature of the mutation, we show that its functional consequences are equivalent to KIF18A deficiency in HeLa cells. We also show that somatic cells progress through mitosis, despite having chromosome alignment defects, while germ cells with similar chromosome alignment defects undergo mitotic arrest and apoptosis. Our data provide evidence for differential requirements for chromosome alignment in germ and somatic cells and show that Kif18a is one of a growing number of genes that are specifically required for cell cycle progression in proliferating germ cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Células Germinativas/fisiología , Cinesinas/genética , Mitosis/fisiología , Animales , Apoptosis/fisiología , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Vectores Genéticos/genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Cinesinas/metabolismo , Ratones , Mitosis/genética , Mutación Missense/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Nat Protoc ; 9(3): 559-74, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504480

RESUMEN

Mouse embryonic stem cells (mESCs) are key tools for genetic engineering, development of stem cell-based therapies and basic research on pluripotency and early lineage commitment. However, successful derivation of germline-competent embryonic stem cell lines has, until recently, been limited to a small number of inbred mouse strains. Recently, there have been considerable advances in the field of embryonic stem cell biology, particularly in the area of pluripotency maintenance in the epiblast from which the mESCs are derived. Here we describe a protocol for efficient derivation of germline-competent mESCs from any mouse strain, including strains previously deemed nonpermissive. We provide a protocol that is generally applicable to most inbred strains, as well as a variant for nonpermissive strains. By using this protocol, mESCs can be derived in 3 weeks and fully characterized after an additional 12 weeks, at efficiencies as high as 90% and in any strain background.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Línea Celular/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Línea Celular/fisiología , Células Madre Embrionarias/fisiología , Femenino , Ratones , Células Madre Pluripotentes/fisiología , Embarazo
11.
J Biol Chem ; 288(44): 31830-41, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24045954

RESUMEN

Skeletal fusions with sterility (sks) is an autosomal recessive mutation of mouse that results in male and female sterility because of defects in gametogenesis. The mutants also have skeletal malformations with fused vertebrae and ribs. We examined testicular phenotypes of sks/sks mice to investigate the defects in spermatogenesis. Histological and immunocytochemical analyses and expression analyses of the marker genes demonstrated that spermatogenesis is arrested at mid to late pachytene stage of meiotic prophase with defective synapsis of the homologous chromosomes. Next, we determined the precise chromosomal localization of the sks locus on a 0.3-Mb region of mouse chromosome 4 by linkage analysis. By sequencing the positional candidate genes in this region and whole exome sequencing, we found a GG to TT nucleotide substitution in exon 6 of the Tmem48 gene that encodes a putative transmembrane protein with six transmembrane domains. The nucleotide substitution causes aberrant splicing, which deletes exon 6 of the Tmem48 transcript. Specific expression of TMEM48 was observed in germ cells of males and females. Furthermore, the phenotypes of the sks mutant were completely rescued by the transgenesis of a genomic fragment containing the wild-type Tmem48 gene. These findings indicate that the Tmem48 mutation is responsible for the gametogenesis defects and skeletal malformations in the sks mice. The TMEM48 protein is a nuclear membrane protein comprising the nuclear pore complex; its exact function in the nuclear pore complex is still unknown. Our finding suggested that the nuclear pore complex plays an important role in mammalian gametogenesis and skeletal development.


Asunto(s)
Enfermedades Óseas , Enfermedades Genéticas Congénitas , Infertilidad Femenina , Infertilidad Masculina , Proteínas de Complejo Poro Nuclear , Espermatogénesis/genética , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Emparejamiento Cromosómico/genética , Análisis Mutacional de ADN , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Sitios Genéticos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Mutantes , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA