Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Immunol Res ; 12(5): 575-591, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38588410

RESUMEN

Poliovirus receptor-related 2 (PVRL2, also known as nectin-2 or CD112) is believed to act as an immune checkpoint protein in cancer; however, most insight into its role is inferred from studies on its known receptor, poliovirus receptor (PVR)-related immunoglobulin domain protein (PVRIG, also known as CD112R). Here, we study PVRL2 itself. PVRL2 levels were found to be high in tumor cells and tumor-derived exosomes. Deletion of PVRL2 in multiple syngeneic mouse models of cancer showed a dramatic reduction in tumor growth that was immune dependent. This effect was even greater than that seen with deletion of PD-L1. PVRL2 was shown to function by suppressing CD8+ T and natural killer cells in the tumor microenvironment. The loss of PVRL2 suppressed tumor growth even in the absence of PVRIG. In contrast, PVRIG loss showed no additive effect in the absence of PVRL2. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade combined with PVRL2 deletion resulted in a near complete block in tumor growth. This effect was not recapitulated by the combined deletion of PVRL2 with its paralog, PVR, which is the ligand for TIGIT. These data uncover PVRL2 as a distinct inhibitor of the antitumor immune response with functions beyond that of its known receptor PVRIG. Moreover, the data provide a strong rationale for combinatorial targeting of PVRL2 and TIGIT for cancer immunotherapy.


Asunto(s)
Nectinas , Receptores de Superficie Celular , Receptores Inmunológicos , Microambiente Tumoral , Animales , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Nectinas/metabolismo , Ratones , Humanos , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Transducción de Señal , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
2.
ACS Cent Sci ; 10(1): 199-208, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292613

RESUMEN

The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (µMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.

3.
Blood ; 143(5): 444-455, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37883802

RESUMEN

ABSTRACT: Transglutaminase factor XIII (FXIII) is essential for hemostasis, wound healing, and pregnancy maintenance. Plasma FXIII is composed of A and B subunit dimers synthesized in cells of hematopoietic origin and hepatocytes, respectively. The subunits associate tightly in circulation as FXIII-A2B2. FXIII-B2 stabilizes the (pro)active site-containing FXIII-A subunits. Interestingly, people with genetic FXIII-A deficiency have decreased FXIII-B2, and therapeutic infusion of recombinant FXIII-A2 (rFXIII-A2) increases FXIII-B2, suggesting FXIII-A regulates FXIII-B secretion, production, and/or clearance. We analyzed humans and mice with genetic FXIII-A deficiency and developed a mouse model of rFXIII-A2 infusion to define mechanisms mediating plasma FXIII-B levels. Like humans with FXIII-A deficiency, mice with genetic FXIII-A deficiency had reduced circulating FXIII-B2, and infusion of FXIII-A2 increased FXIII-B2. FXIII-A-deficient mice had normal hepatic function and did not store FXIII-B in liver, indicating FXIII-A does not mediate FXIII-B secretion. Transcriptional analysis and polysome profiling indicated similar F13b levels and ribosome occupancy in FXIII-A-sufficient and -deficient mice and in FXIII-A-deficient mice infused with rFXIII-A2, indicating FXIII-A does not induce de novo FXIII-B synthesis. Unexpectedly, pharmacokinetic/pharmacodynamic modeling of FXIII-B antigen after rFXIII-A2 infusion in humans and mice suggested FXIII-A2 slows FXIII-B2 loss from plasma. Accordingly, comparison of free FXIII-B2 vs FXIII-A2-complexed FXIII-B2 (FXIII-A2B2) infused into mice revealed faster clearance of free FXIII-B2. These data show FXIII-A2 prevents FXIII-B2 loss from circulation and establish the mechanism underlying FXIII-B2 behavior in FXIII-A deficiency and during rFXIII-A2 therapy. Our findings reveal a unique, reciprocal relationship between independently synthesized subunits that mediate an essential hemostatic protein in circulation. This trial was registered at www.ClinicalTrials.com as #NCT00978380.


Asunto(s)
Deficiencia del Factor XIII , Animales , Femenino , Humanos , Ratones , Embarazo , Pruebas de Coagulación Sanguínea , Factor XIII/metabolismo , Deficiencia del Factor XIII/genética , Factor XIIIa/genética , Hemostasis , Hemostáticos/sangre
4.
bioRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546992

RESUMEN

The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called µMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.

5.
Nat Biotechnol ; 41(2): 273-281, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36138170

RESUMEN

Targeted degradation of cell surface and extracellular proteins via lysosomal delivery is an important means to modulate extracellular biology. However, these approaches have limitations due to lack of modularity, ease of development, restricted tissue targeting and applicability to both cell surface and extracellular proteins. We describe a lysosomal degradation strategy, termed cytokine receptor-targeting chimeras (KineTACs), that addresses these limitations. KineTACs are fully genetically encoded bispecific antibodies consisting of a cytokine arm, which binds its cognate cytokine receptor, and a target-binding arm for the protein of interest. We show that KineTACs containing the cytokine CXCL12 can use the decoy recycling receptor, CXCR7, to target a variety of target proteins to the lysosome for degradation. Additional KineTACs were designed to harness other CXCR7-targeting cytokines, CXCL11 and vMIPII, and the interleukin-2 (IL-2) receptor-targeting cytokine IL-2. Thus, KineTACs represent a general, modular, selective and simple genetically encoded strategy for inducing lysosomal delivery of extracellular and cell surface targets with broad or tissue-specific distribution.


Asunto(s)
Quimera Dirigida a la Proteólisis , Receptores de Citocinas , Membrana Celular , Interleucina-2 , Receptores de Citocinas/química , Receptores de Citocinas/metabolismo , Transducción de Señal , Proteolisis , Quimiocina CXCL12/química
6.
ACS Cent Sci ; 8(10): 1447-1456, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36313159

RESUMEN

Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.

7.
Elife ; 112022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257663

RESUMEN

Characterization of cell surface proteome differences between cancer and healthy cells is a valuable approach for the identification of novel diagnostic and therapeutic targets. However, selective sampling of surface proteins for proteomics requires large samples (>10e6 cells) and long labeling times. These limitations preclude analysis of material-limited biological samples or the capture of rapid surface proteomic changes. Here, we present two labeling approaches to tether exogenous peroxidases (APEX2 and HRP) directly to cells, enabling rapid, small-scale cell surface biotinylation without the need to engineer cells. We used a novel lipidated DNA-tethered APEX2 (DNA-APEX2), which upon addition to cells promoted cell agnostic membrane-proximal labeling. Alternatively, we employed horseradish peroxidase (HRP) fused to the glycan-binding domain of wheat germ agglutinin (WGA-HRP). This approach yielded a rapid and commercially inexpensive means to directly label cells containing common N-Acetylglucosamine (GlcNAc) and sialic acid glycans on their surface. The facile WGA-HRP method permitted high surface coverage of cellular samples and enabled the first comparative surface proteome characterization of cells and cell-derived small extracellular vesicles (EVs), leading to the robust quantification of 953 cell and EV surface annotated proteins. We identified a newly recognized subset of EV-enriched markers, as well as proteins that are uniquely upregulated on Myc oncogene-transformed prostate cancer EVs. These two cell-tethered enzyme surface biotinylation approaches are highly advantageous for rapidly and directly labeling surface proteins across a range of material-limited sample types.


Asunto(s)
Vesículas Extracelulares , Proteómica , Peroxidasa de Rábano Silvestre , Humanos , Masculino , Proteoma/análisis , Aglutininas del Germen de Trigo
8.
Mol Cell Proteomics ; 21(4): 100217, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217172

RESUMEN

Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.


Asunto(s)
Proteoma , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Humanos , Hipoxia , Microambiente Tumoral
9.
Cell Chem Biol ; 29(4): 597-604.e7, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35104453

RESUMEN

Layilin is a small type I transmembrane receptor thought to bridge extracellular ligands with the cytoskeleton through its intracellular interactions with the scaffolding protein talin. Recent bulk- and single-cell RNA sequencing experiments have repeatedly found layilin to be highly upregulated in key T cell sub-populations in multiple disease states, suggesting its importance to the adaptive immune response. Despite this prevalence, little is known about layilin's precise role in mediating extracellular interactions or how these interactions can be modulated in disease states. Here we take advantage of layilin's dependence on calcium ions to discover its interactions with highly glycosylated type II, IV, V, and VI collagens. Toward exploring layilin's role in disease, we exploited the Ca2+ dependence in a differential phage display strategy to engineer species cross-reactive antibodies that block this interaction.


Asunto(s)
Proteínas Portadoras , Glicoproteínas de Membrana , Proteínas Portadoras/metabolismo , Ligandos , Glicoproteínas de Membrana/genética , Talina/metabolismo
10.
Nat Biotechnol ; 39(8): 928-935, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33767397

RESUMEN

Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.


Asunto(s)
Anticuerpos Antivirales/sangre , Técnicas Biosensibles/métodos , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Sistemas de Atención de Punto , SARS-CoV-2/inmunología , COVID-19/virología , Humanos , Luminiscencia
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33536314

RESUMEN

N terminomics is a powerful strategy for profiling proteolytic neo-N termini, but its application to cell surface proteolysis has been limited by the low relative abundance of plasma membrane proteins. Here we apply plasma membrane-targeted subtiligase variants (subtiligase-TM) to efficiently and specifically capture cell surface N termini in live cells. Using this approach, we sequenced 807 cell surface N termini and quantified changes in their abundance in response to stimuli that induce proteolytic remodeling of the cell surface proteome. To facilitate exploration of our datasets, we developed a web-accessible Atlas of Subtiligase-Captured Extracellular N Termini (ASCENT; http://wellslab.org/ascent). This technology will facilitate greater understanding of extracellular protease biology and reveal neo-N termini biomarkers and targets in disease.


Asunto(s)
Membrana Celular/metabolismo , Mapeo Peptídico/métodos , Péptido Sintasas/metabolismo , Subtilisinas/metabolismo , Células HEK293 , Humanos , Mutación , Péptido Sintasas/genética , Procesamiento Proteico-Postraduccional , Proteolisis , Subtilisinas/genética
12.
Nat Chem Biol ; 17(1): 113-121, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082574

RESUMEN

Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Anticuerpos de Cadena Única/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Sitios de Unión de Anticuerpos/genética , Sitios de Unión de Anticuerpos/inmunología , Chlorocebus aethiops , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
13.
Cell Rep Med ; 1(7): 100123, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32995758

RESUMEN

Comprehensive understanding of the serological response to SARS-CoV-2 infection is important for both pathophysiologic insight and diagnostic development. Here, we generate a pan-human coronavirus programmable phage display assay to perform proteome-wide profiling of coronavirus antigens enriched by 98 COVID-19 patient sera. Next, we use ReScan, a method to efficiently sequester phage expressing the most immunogenic peptides and print them onto paper-based microarrays using acoustic liquid handling, which isolates and identifies nine candidate antigens, eight of which are derived from the two proteins used for SARS-CoV-2 serologic assays: spike and nucleocapsid proteins. After deployment in a high-throughput assay amenable to clinical lab settings, these antigens show improved specificity over a whole protein panel. This proof-of-concept study demonstrates that ReScan will have broad applicability for other emerging infectious diseases or autoimmune diseases that lack a valid biomarker, enabling a seamless pipeline from antigen discovery to diagnostic using one recombinant protein source.


Asunto(s)
Antígenos Virales/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Anticuerpos Antivirales/sangre , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Análisis por Matrices de Proteínas , Proteoma/inmunología , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Proteínas Virales/inmunología
14.
mSphere ; 5(5)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938700

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual's seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies.IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Peptidil-Dipeptidasa A/inmunología , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Antígenos Virales/inmunología , Sitios de Unión/inmunología , COVID-19 , Infecciones por Coronavirus/prevención & control , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Unión Proteica , Dominios Proteicos/inmunología , SARS-CoV-2
15.
bioRxiv ; 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32817948

RESUMEN

Neutralizing agents against SARS-CoV-2 are urgently needed for treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domain binders with high affinity toward neutralizing epitopes without the need for high-resolution structural information. We constructed a VH-phage library and targeted a known neutralizing site, the angiotensin-converting enzyme 2 (ACE2) binding interface of the trimeric SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified 85 unique VH binders to two non-overlapping epitopes within the ACE2 binding site on Spike-RBD. This enabled us to systematically link these VH domains into multivalent and bi-paratopic formats. These multivalent and bi-paratopic VH constructs showed a marked increase in affinity to Spike (up to 600-fold) and neutralization potency (up to 1400-fold) on pseudotyped SARS-CoV-2 virus when compared to the standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with half-minimal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng/mL). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain bound an RBD at the ACE2 binding site, explaining its increased neutralization potency and confirming our original design strategy. Our results demonstrate that targeted selection and engineering campaigns using a VH-phage library can enable rapid assembly of highly avid and potent molecules towards therapeutically important protein interfaces.

16.
medRxiv ; 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839788

RESUMEN

Current serology tests for SARS-CoV-2 antibodies mainly take the form of enzyme-linked immunosorbent assays or lateral flow assays, with the former being laborious and the latter being expensive and often lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost solution-based assay to detect antibodies in serum, plasma, whole blood, and saliva, using rationally designed split luciferase antibody biosensors (spLUC). This new assay, which generates quantitative results in as short as 5 minutes, substantially reduces the complexity and improves the scalability of COVID-19 antibody tests for point-of-care and broad population testing.

17.
medRxiv ; 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32511506

RESUMEN

As SARS-CoV-2 continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Convalescent serum is being used for treatment and for isolation of patient-derived antibodies. However, currently there is not a simple means to estimate serum bulk neutralizing capability. Here we present an efficient competitive serological assay that can simultaneously determine an individual's seropositivity against the SARS-CoV-2 Spike protein and estimate the neutralizing capacity of anti-Spike antibodies to block interaction with the human angiotensin converting enzyme 2 (ACE2) required for viral entry. In this ELISA-based assay, we present natively-folded viral Spike protein receptor binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then supplemented with soluble ACE2-Fc to compete for RBD-binding serum antibodies, and antibody binding quantified. Comparison of signal from untreated serum and ACE2-Fc-treated serum reveals the presence of antibodies that compete with ACE2 for RBD binding, as evidenced by loss of signal with ACE2-Fc treatment. In our test cohort of nine convalescent SARS-CoV-2 patients, we found all patients had developed anti-RBD antibodies targeting the epitope responsible for ACE2 engagement. This assay provides a simple and high-throughput method to screen patient sera for potentially neutralizing anti-Spike antibodies to enable identification of candidate sera for therapeutic use.

18.
Blood ; 135(19): 1704-1717, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315384

RESUMEN

Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fibrinolisina/metabolismo , Obesidad/patología , Trombina/metabolismo , Trombomodulina/metabolismo , Trombosis/patología , Animales , Ratones , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Trombosis/etiología , Trombosis/metabolismo
19.
J Biol Chem ; 294(2): 390-396, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30409906

RESUMEN

In cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), the amyloid ß (Aß) peptide deposits along the vascular lumen, leading to degeneration and dysfunction of surrounding tissues. Activated coagulation factor XIIIa (FXIIIa) covalently cross-links proteins in blood and vasculature, such as in blood clots and on the extracellular matrix. Although FXIIIa co-localizes with Aß in CAA, the ability of FXIIIa to cross-link Aß has not been demonstrated. Using Western blotting, kinetic assays, and microfluidic analyses, we show that FXIIIa covalently cross-links Aß40 into dimers and oligomers (kcat/Km = 1.5 × 105 m-1s-1), as well as to fibrin, platelet proteins, and blood clots under flow in vitro Aß40 also increased the stiffness of platelet-rich plasma clots in the presence of FXIIIa. These results suggest that FXIIIa-mediated cross-linking may contribute to the formation of Aß deposits in CAA and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Sanguíneas/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Factor XIIIa/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Plaquetas/metabolismo , Plaquetas/patología , Proteínas Sanguíneas/análisis , Angiopatía Amiloide Cerebral/patología , Factor XIIIa/análisis , Fibrina/análisis , Fibrina/metabolismo , Humanos , Fragmentos de Péptidos/análisis , Plasma Rico en Plaquetas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Multimerización de Proteína
20.
Blood Adv ; 2(1): 25-35, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29344582

RESUMEN

The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.


Asunto(s)
Eritrocitos/patología , Factor XIII/fisiología , Trombosis/patología , Trombosis de la Vena/patología , Animales , Plaquetas , Fibrina/metabolismo , Hemorragia/etiología , Ratones , Plasma/química , Trombina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA