Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220550, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37839440

RESUMEN

Dynamic changes in jaw movements and bite forces depend on muscle architectural and neural factors that have rarely been compared within the same muscle. Here we investigate how regional muscle architecture dynamics-fascicle rotation, shortening, lengthening and architectural gear ratio (AGR)-vary during chewing across a functionally heterogeneous muscle. We evaluate whether timing in architecture dynamics relates to gape, food material properties and/or muscle activation. We also examine whether static estimates of temporalis fibre architecture track variation in dynamic architecture. Fascicle-level architecture dynamics were measured in three regions of the superficial temporalis of three adult tufted capuchins (Sapajus apella) using biplanar videoradiography and the XROMM workflow. Architecture dynamics data were paired with regional fine-wire electromyography data from four adult tufted capuchins. Gape accounted for most architectural change across the temporalis, but architectural dynamics varied between regions. Mechanically challenging foods were associated with lower AGRs in the anterior region. The timing of most dynamic architectural changes did not vary between regions and differed from regional variation in static architecture. Collectively these findings suggest that, when modelling temporalis muscle force production in extant and fossil primates, it is important to account for the effects of gape, regionalization and food material properties. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Asunto(s)
Músculo Masetero , Sapajus , Animales , Músculo Masetero/fisiología , Maxilares/fisiología , Músculo Temporal/fisiología , Músculo Esquelético , Primates
2.
Am J Biol Anthropol ; 180(4): 633-654, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790169

RESUMEN

OBJECTIVES: Morphological variation in cranial sutures is used to infer aspects of primate feeding behavior, including diet, but strain regimes across sutures are not well documented. Our aim is to test hypotheses about sagittal suture morphology, strain regime, feeding behavior, and muscle activity relationships in robust Sapajus and gracile Cebus capuchin primates. MATERIALS AND METHODS: Morphometrics of sinuosity in three regions of the sagittal suture were compared among museum specimens of Sapajus and Cebus, as well as in robust and gracile lab specimens. In vivo strains and bilateral electromyographic (EMG) activity were recorded from these regions in the temporalis muscles of capuchin primates while they fed on mechanically-varying foods. RESULTS: Sapajus and the anterior suture region exhibited greater sinuosity than Cebus and posterior regions. In vivo data reveal minor differences in strain regime between robust and gracile phenotypes but show higher strain magnitudes in the middle suture region and higher tensile strains anteriorly. After gage location, feeding behavior has the most consistent and strongest impact on strain regime in the sagittal suture. Strain in the anterior suture has a high tension to compression ratio compared to the posterior region, especially during forceful biting in the robust Sapajus-like individual. DISCUSSION: Sagittal suture complexity in robust capuchins likely reflects feeding behaviors associated with mechanically challenging foods. Sutural strain regimes in other anthropoid primates may also be affected by activity in feeding muscles.


Asunto(s)
Suturas Craneales , Masticación , Cebus/fisiología , Sapajus/fisiología , Animales , Masculino , Femenino , Análisis de Varianza , Modelos Lineales , Teorema de Bayes , Músculo Esquelético/fisiología , Análisis de Regresión , Masticación/fisiología , Suturas Craneales/fisiología
3.
Proc Biol Sci ; 289(1976): 20220711, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703052

RESUMEN

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fuerza de la Mordida , Cara , Fósiles , Cráneo/anatomía & histología
4.
Methods Mol Biol ; 2327: 271-280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34410651

RESUMEN

The oral cavity houses a diverse consortium of microorganisms corresponding to specific microbial niches within the oral cavity. The complicated nature of sample collection limits the accuracy, reproducibility, and completeness of sample collection of the dentogingival microbiome. Moreover, large variability among human oral samples introduces inexorable confounds. Here, we introduce a method to study the dentogingival microbiome using a murine model that allows for greater control over experimental variability and permits collection of the dentogingival microbiome in an intact state and in its entirety.As an example of this approach, this chapter provides a workflow to explore the effect of dietary fiber consumption on the murine dentogingival microbiome . Mice are fed diets corresponding to Fiber, Sugar, Fiber + Sugar, and Control groups for 7 weeks. A whole-mandible extraction technique is described to isolate the mandibular dentogingival surfaces. 16S rRNA gene analysis is coupled with removal of unwanted host DNA amplification products to allow an investigation of the dental microbiome in the presence of increased fiber in terms of microbial taxonomic abundance and diversity.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , ADN Ribosómico , Fibras de la Dieta , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Boca , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Azúcares
5.
J Hum Evol ; 143: 102784, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32315868

RESUMEN

Odd-nosed monkeys 'arm-swing' more frequently than other colobines. They are therefore somewhat behaviorally analogous to atelines and apes. Scapular morphology regularly reflects locomotor mode, with both arm-swinging and climbing anthropoids showing similar characteristics, especially a mediolaterally narrow blade and cranially angled spine and glenoid. However, these traits are not expressed uniformly among anthropoids. Therefore, behavioral convergences in the odd-nosed taxa of Nasalis, Pygathrix, and Rhinopithecus with hominoids may not have resulted in similar structural convergences. We therefore used a broad sample of anthropoids to test how closely odd-nosed monkey scapulae resemble those of other arm-swinging primates. We used principal component analyses on size-corrected linear metrics and angles that reflect scapular size and shape in a broad sample of anthropoids. As in previous studies, our first component separated terrestrial and above-branch quadrupeds from clambering and arm-swinging taxa. On this axis, odd-nosed monkeys were closer than other colobines to modern apes and Ateles. All three odd-nosed genera retain glenoid orientations that are more typical of other colobines, but Pygathrix and Rhinopithecus are closer to hominoids than to other Asian colobines in mediolateral blade breadth, spine angle, and glenoid position. This suggests that scapular morphology of Pygathrix may reflect a significant reliance on arm-swinging and that the morphology of Rhinopithecus may reflect more reliance on general climbing. As 'arm-swinging' features are also found in taxa that only rarely arm-swing, we hypothesize that these features are also adaptive for scrambling and bridging in larger bodied anthropoids that use the fine-branch component of their arboreal niches.


Asunto(s)
Evolución Biológica , Hominidae/anatomía & histología , Locomoción , Presbytini/anatomía & histología , Escápula/anatomía & histología , Animales , Hominidae/fisiología , Filogenia , Presbytini/fisiología
6.
Dent J (Basel) ; 7(2)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159370

RESUMEN

The oral cavity houses a diverse consortium of microorganisms, heavily influenced by host diet, that can mediate dental health and disease. While the impact of dietary carbohydrates to the dental microbiome has been well-documented, the effect of fiber as a mechanical influence on the dental microbiome is unexplored. We performed 16S rRNA gene analysis to investigate the response of the dental microbiome to the presence of increased fiber in terms of microbial taxonomic abundance and diversity. Dental microbial community structure was significantly different in mice fed a diet supplemented with increased fiber and/or sugar. Fiber significantly affected measures of beta diversity at the phylum and genus levels, and a strong interactive effect on alpha diversity was observed between sugar and fiber at the phylum level. The addition of fiber also induced significant variation in relative taxonomic abundance. This study demonstrates that fiber can promote significant variations in the mouse dental microbiome.

7.
J Anat ; 233(6): 807-813, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30298923

RESUMEN

Cranial sutures are fibrous connective tissue articulations found between intramembranous bones of the vertebrate cranium. Growth and remodeling of these tissues is partially regulated by biomechanical loading patterns that include stresses related to chewing. Advances in oral processing structure and function of the cranium that enabled mammalian-style chewing is commonly tied to the origins and evolution of this group. To what degree masticatory overuse or underuse shapes the complexity and ossification around these articulations can be predicted based on prior experimental and comparative work. Here, we report on a mouse model system that has been used to experimentally manipulate dietary material properties in order to investigate cranial suture morphology. Experimental groups were fed diets of contrasting material properties. A masticatory overuse group was fed pelleted rodent chow, nuts with shells, and given access to cotton bedding squares. An underuse group was deprived of cotton bedding as well as diverse textured food, and instead received gelatinized food continuously. Animals were raised from weaning to adulthood on these diets, and sagittal, coronal and lambdoid suture morphology was compared between groups. Predicted intergroup variation was observed in mandibular corpus size and calvarial suture morphology, suggesting that masticatory overuse is associated with jaw and suture growth. The anterior region of the sagittal suture where it intersects with the coronal suture (bregma) showed no effect from the experiment. The posterior sagittal suture where it intersects with the lambdoid sutures (lambda) was more complex in the overuse group. In other words, the posterior calvarium was responsive to dietary material property demands while the anterior calvarium was not. This probably resulted from the different strain magnitudes and/or strain frequencies that occurred during overuse diets with diverse material properties as compared with underuse diets deprived of such enrichment. This work highlights the contrasting pattern of the sutural response to loading differences within the calvarium as a result of diet.


Asunto(s)
Suturas Craneales/anatomía & histología , Masticación/fisiología , Animales , Fenómenos Biomecánicos , Dieta , Femenino , Ratones
8.
Anat Rec (Hoboken) ; 300(1): 171-195, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28000396

RESUMEN

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A. sediba) to differ in the morphology of the zygomatic root, including changes to both the shape and positioning of the zygomatic root complex, in addition to creating variants of Sts 5 lacking anterior pillars. We found that both an expanded zygomatic root and the presence of "anterior pillars" reinforce the face against feeding loads. We also found that strain orientations are most compatible with the hypothesis that the pillar evolved to resist loads associated with premolar loading, and that this morphology has an ancillary effect of strengthening the face during all loading regimes. These results provide support for the functional hypotheses. However, we found that an anteriorly positioned zygomatic root increases strain magnitudes even in models with an inflated/reinforced root complex. These results suggest that an anteriorly placed zygomatic root complex evolved to enhance the efficiency of bite force production while facial reinforcement features, such as the anterior pillar and the expanded zygomatic root, may have been selected for in part to compensate for the weakening effect of this facial configuration. Anat Rec, 300:171-195, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hominidae/anatomía & histología , Hominidae/fisiología , Masticación/fisiología , Cráneo/fisiología , Cigoma/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Dieta , Conducta Alimentaria/fisiología , Análisis de Elementos Finitos , Modelos Teóricos , Cráneo/anatomía & histología , Cigoma/anatomía & histología
9.
PeerJ ; 4: e2242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547550

RESUMEN

The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak. An alternate hypothesis, based on the observation that humans have mechanically efficient jaw adductors, states that the modern human face is adapted to generate and withstand high biting forces. We used finite element analysis (FEA) to test two opposing mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less well configured, or (2) better configured to generate and withstand high magnitude bite forces. We considered intraspecific variation in our examination of human feeding biomechanics by examining a sample of geographically diverse crania that differed notably in shape. We found that our biomechanical models of human crania had broadly similar mechanical behavior despite their shape variation and were, on average, less structurally stiff than the crania of chimpanzees during unilateral biting when loaded with physiologically-scaled muscle loads. Our results also show that modern humans are efficient producers of bite force, consistent with previous analyses. However, highly tensile reaction forces were generated at the working (biting) side jaw joint during unilateral molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a configuration would have increased the risk of joint dislocation and constrained the maximum recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, premolars) biting could have been selectively important in humans, although the reduced size of the premolars in humans has been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that human craniofacial evolution was probably not driven by selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency in humans is likely to be a secondary byproduct of selection for some function unrelated to forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures maintaining craniofacial features that favor forceful biting and chewing behaviors, leading to the characteristically small and gracile faces of modern humans.

10.
Nat Commun ; 7: 10596, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853550

RESUMEN

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Asunto(s)
Fuerza de la Mordida , Simulación por Computador , Dieta , Hominidae , Maxilares/fisiología , Desgaste de los Dientes , Animales , Alimentos , Fósiles , Diente Molar , Pan troglodytes
11.
J Morphol ; 276(7): 759-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25758098

RESUMEN

Mice raised in experimental habitats containing an artificial network of narrow "arboreal" supports frequently use hallucal grasps during locomotion. Therefore, mice in these experiments can be used to model a rudimentary form of arboreal locomotion in an animal without other morphological specializations for using a fine branch niche. This model would prove useful to better understand the origins of arboreal behaviors in mammals like primates. In this study, we examined if locomotion on these substrates influences the mid-diaphyseal cross-sectional geometry of mouse metatarsals. Thirty CD-1/ICR mice were raised in either arboreal (composed of elevated narrow branches of varying orientation) or terrestrial (flat ramps and walkways that are stratified) habitats from weaning (21 days) to adulthood (≥4 months). After experiments, the hallucal metatarsal (Mt1) and third metatarsal (Mt3) for each individual were isolated and micro-computed tomography (micro-CT) scans were obtained to calculate mid-shaft cross-sectional area and polar section modulus. Arboreal mice had Mt1s that were significantly more robust. Mt3 cross sections were not significantly different between groups. The arboreal group also exhibited a significantly greater Mt1/Mt3 ratio for both robusticity measures. We conclude that the hallucal metatarsal exhibits significant phenotypic plasticity in response to arboreal treatment due to habitual locomotion that uses a rudimentary hallucal grasp. Our results support the hypothesis that early adaptive stages of fine branch arboreality should be accompanied by a slightly more robust hallux associated with the biomechanical demands of this niche.


Asunto(s)
Evolución Biológica , Huesos Metatarsianos/anatomía & histología , Ratones/anatomía & histología , Adaptación Fisiológica , Animales , Femenino , Hallux/anatomía & histología , Hallux/fisiología , Locomoción , Masculino , Metalotioneína 3 , Huesos Metatarsianos/fisiología , Ratones/fisiología , Ratones Endogámicos ICR , Modelos Animales , Primates/anatomía & histología , Primates/fisiología , Microtomografía por Rayos X
12.
Anat Rec (Hoboken) ; 298(1): 122-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529239

RESUMEN

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P(3) and M(2) . Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes.


Asunto(s)
Análisis de Elementos Finitos , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Femenino , Masculino , Músculos Masticadores/anatomía & histología , Músculos Masticadores/fisiología , Matemática , Modelos Biológicos , Pan troglodytes/clasificación , Análisis de Componente Principal , Especificidad de la Especie
13.
Anat Rec (Hoboken) ; 298(1): 145-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529240

RESUMEN

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.


Asunto(s)
Arco Dental/anatomía & histología , Arco Dental/fisiología , Dieta , Hominidae/anatomía & histología , Hominidae/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Ingestión de Alimentos/fisiología , Ecología , Análisis de Elementos Finitos , Imagenología Tridimensional , Matemática , Modelos Biológicos
14.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23794330

RESUMEN

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Asunto(s)
Adaptación Biológica , Antropología/métodos , Evolución Biológica , Dieta , Hominidae/anatomía & histología , Animales , Isótopos de Carbono/análisis , Esmalte Dental/anatomía & histología , Ingestión de Alimentos , Análisis de Elementos Finitos , Hominidae/fisiología
15.
Anat Rec (Hoboken) ; 296(5): 822-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23494946

RESUMEN

The origin of the mammalian order Primates is nested within a Euarchontan ancestry that was probably exploiting the fine branch arboreal niche in a facultative way. A putative transition into this habitat may have begun with a more generalized small-bodied mammal that lacked climbing specializations for grasping hands and feet. Here, we investigate whether mice exhibit central nervous system (CNS) plasticity associated with learning to grasp/climb proficiently. House mice were used to study phenotypic plasticity within the cerebellum and primary somatosensory cortex associated with the fine branch niche. This experimental treatment has previously been shown to influence skeletal plasticity in part because climb-training encourages tail use and facultative pedal grasping. The CNS necessary to coordinate and control these locomotor behaviors was investigated in a standard mouse model (N = 10 male CD-1/ICR mice), and plasticity was detected by histomorphometric and immunohistologic changes within the cerebellum and cerebrum. The climbing group had a significantly smaller relative granule cell layer in cerebellar lobule 1-3 than the control group (P < 0.10), but increased nerve growth factor immunoreactivity in white matter tracts of these lobules (P < 0.05). Qualitative observations in the primary somatosensory cortex revealed greater pyramidal/stellate cell counts in climbers. We suggest that coordinated tail and hindlimb learning within the arboreal milieu is facilitated by increased growth factor expression and neuronal alterations in the CNS. These findings suggest that mammals with a generalized Euarchontogliran body plan were capable of facultative pedal grasping and tail use so as to exploit the terminal branch niche.


Asunto(s)
Conducta Animal/fisiología , Cerebelo/fisiología , Locomoción/fisiología , Corteza Somatosensorial/fisiología , Animales , Miembro Posterior/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Plasticidad Neuronal/fisiología , Cola (estructura animal)/fisiología
16.
J Hum Evol ; 62(1): 165-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22130183

RESUMEN

Recent studies of dental microwear and craniofacial mechanics have yielded contradictory interpretations regarding the feeding ecology and adaptations of Australopithecus africanus. As part of this debate, the methods used in the mechanical studies have been criticized. In particular, it has been claimed that finite element analysis has been poorly applied to this research question. This paper responds to some of these mechanical criticisms, highlights limitations of dental microwear analysis, and identifies avenues of future research.


Asunto(s)
Conducta Alimentaria/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Desgaste de los Dientes/fisiopatología , Diente/anatomía & histología , Diente/fisiología , Animales , Fenómenos Biomecánicos , Alimentos , Fósiles
17.
Anat Rec (Hoboken) ; 295(2): 278-88, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190334

RESUMEN

The global biomechanical impact of cranial sutures on the face and cranium during dynamic conditions is not well understood. It is hypothesized that sutures act as energy absorbers protecting skulls subjected to dynamic loads. This hypothesis predicts that sutures have a significant impact on global patterns of strain and cranial structural stiffness when analyzed using dynamic simulations; and that this global impact is influenced by suture material properties. In a finite element model developed from a juvenile Rhesus macaque cranium, five different sets of suture material properties for the zygomaticotemporal sutures were tested. The static and dynamic analyses produced similar results in terms of strain patterns and reaction forces, indicating that the zygomaticotemporal sutures have limited impact on global skull mechanics regardless of loading design. Contrary to the functional hypothesis tested in this study, the zygomaticotemporal sutures did not absorb significant amounts of energy during dynamic simulations regardless of loading speed. It is alternatively hypothesized that sutures are mechanically significant only insofar as they are weak points on the cranium that must be shielded from unduly high stresses so as not to disrupt vitally important growth processes. Thus, sutural and overall cranial form in some vertebrates may be optimized to minimize or otherwise modulate sutural stress and strain.


Asunto(s)
Suturas Craneales/anatomía & histología , Macaca/anatomía & histología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Simulación por Computador , Suturas Craneales/fisiología , Análisis de Elementos Finitos , Macaca/fisiología , Modelos Anatómicos , Cráneo/anatomía & histología , Cráneo/fisiología , Estrés Mecánico
18.
Anat Rec (Hoboken) ; 294(7): 1170-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21618442

RESUMEN

It has been suggested recently that masticatory muscle size reduction in humans resulted in greater encephalization through decreased compressive forces on the cranial vault. Following this logic, if masticatory muscle size were increased, then a reduction in brain growth should also occur. This study was designed to test this hypothesis using a myostatin (GDF-8) knockout mouse model. Myostatin is a negative regulator of skeletal muscle growth, and individuals lacking this gene show significant hypermuscularity. Sixty-two [32 wild-type (WT) and 30 GDF-8 -/- knockout], 1, 28, 56, and 180-day-old CD-1 mice were used. Body and masseter muscle weights were collected following dissection and standardized lateral and dorsoventral cephalographs were obtained. Cephalometric landmarks were identified on the radiographs and cranial volume was calculated. Mean differences were assessed using a two-way ANOVA. KO mice had significantly greater body and masseter weights beginning at 28 days compared with WT controls. No significant differences in cranial volumes were noted between KO and WT. Muscle weight was not significantly correlated with cranial volume in 1, 28, or 180-day-old mice. Muscle weights exhibited a positive correlation with cranial volume at 56 days. Results demonstrate that masticatory hypermuscularity is not associated with reduced cranial volume. In contrast, there is abundant data demonstrating the opposite, brain growth determines cranial vault growth and masticatory apparatus only affects ectocranial morphology. The results presented here do not support the hypothesis that a reduction in masticatory musculature relaxed compressive forces on the cranial vault allowing for greater encephalization.


Asunto(s)
Músculo Masetero/patología , Músculos Masticadores/patología , Miostatina/fisiología , Cráneo/anatomía & histología , Animales , Masculino , Músculo Masetero/crecimiento & desarrollo , Músculos Masticadores/crecimiento & desarrollo , Ratones , Ratones Noqueados , Desarrollo de Músculos , Cráneo/crecimiento & desarrollo
19.
J Morphol ; 272(2): 230-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21210492

RESUMEN

We use an outbred laboratory mouse strain (ICR/CD-1, Charles River Laboratories, Inc.) to model a type of preprimate locomotion associated with rudimentary pedal grasping. Ten male mice were assigned to either control or climbing groups (n = 5 per group). Climbing mice lived within a specialized terrarium that included ∼7.5 m of thin branches (5 and 10 cm long) with a thickness of 3.3 mm, arranged in a reticulated canopy. Food, water, and a nest site were placed among the branches. To discourage mice from palmigrade or digitigrade locomotion, the floor of the terrarium was flooded with a few centimeters of water. Climbing mice were placed in this setting upon weaning and reared for 3 months until they were mature in size. Litter, and age-matched controls were also maintained for comparison with climbers. Climbing mice quickly acclimated to the requirements of the fine-branch model using the foot and tail for grasping and balance. At maturity, climbing and control mice exhibited minor, but significant, morphological plasticity. For climbers, this includes a greater angle of the femoral neck, larger patellar groove index, relatively shorter talar neck length, and more circular talar head aspect ratio (P < 0.10). Climbers also exhibit increased curvature of the distal third metacarpal, decreased talar head angle, and relatively longer caudal vertebrae transverse processes (P < 0.05). These results in a small-bodied eutherian mammal suggest that facultative hallucial opposability and coordinated tail use enable a kind of grasping active arboreal quadrupedality relevant to the latest stages of pre-euarchontan evolution. In light of these data, we hypothesize that a unique advantage of mouse-sized mammals is that they exhibit a highly flexible body plan allowing them to engage in a diverse array of anatomical positions without requiring specific limb morphologies.


Asunto(s)
Huesos/anatomía & histología , Locomoción , Animales , Evolución Biológica , Extremidades/anatomía & histología , Pie/anatomía & histología , Masculino , Huesos del Metacarpo/anatomía & histología , Ratones , Ratones Endogámicos ICR , Actividad Motora , Postura , Cola (estructura animal)/fisiología , Astrágalo/anatomía & histología
20.
Anat Rec (Hoboken) ; 293(9): 1477-91, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20652940

RESUMEN

The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic material behavior that varied in different modeling experiments, representing either fused or unfused sutures. The values of elastic moduli employed in these trials ranged over several orders of magnitude. Each model was evaluated under incisor, premolar, and molar biting conditions. Results demonstrate that skulls with unfused sutures permitted more deformations and experienced higher total strain energy. However, strain patterns remained relatively unaffected away from the suture sites, and bite reaction force was likewise barely affected. These findings suggest that suture elasticity does not substantially alter load paths through the macaque skull or its underlying rigid body kinematics. An implication is that, for the purposes of finite element analysis, omitting or fusing sutures is a reasonable modeling approximation for skulls with small suture volume fraction if the research objective is to observe general patterns of craniofacial biomechanics under static loading conditions. The manner in which suture morphology and ossification affect the mechanical integrity of skulls and their ontogeny and evolution awaits further investigation, and their viscoelastic properties call for dynamic simulations.


Asunto(s)
Fuerza de la Mordida , Suturas Craneales/anatomía & histología , Macaca/anatomía & histología , Modelos Anatómicos , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Análisis de Elementos Finitos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA