Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 115: 171-177, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902582

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) is a global public health problem. Second-generation direct-acting antivirals targeting non-structural regions on the viral genome are the cornerstone for treatment of chronic infection. However, resistance-associated variants (RAVs) have been reported to be associated with therapeutic failure. The aim of this study was to assess the frequency of variants, including RAVs, in the NS3, NS5A and NS5B regions at baseline in Brazilian patients with chronic hepatitis C with HCV genotypes 1a, 1b and 3a. METHODS: Serum samples from 13 patients were used to obtain viral RNA. Massively parallel sequencing was performed using genotype-specific amplicons and a panel of Ampliseq technology for all genotypes. RESULTS: Several non-synonymous substitutions were detected at baseline for 11 responders and pre-/post-treatment for two non-responders. HCV genotype 3a was found to have significantly more non-synonymous substitutions than HCV genotype 1 in the NS3 and NS5A regions. Analyses were conducted using quantitative and qualitative inter- and intrapatient comparisons. Variants that confer resistance to the treatment used by the patients were found in both responders and non-responders. CONCLUSIONS: A wide frequency distribution of RAVs was found at baseline, and this did not interfere with the achievement of a sustained response. Evaluation of the presence of RAVs requires additional study in order to determine clinical relevance.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Genotipo , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Infección Persistente , Proteínas no Estructurales Virales/genética
2.
PLoS One ; 13(10): e0205228, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30286173

RESUMEN

Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used to collect the biofilm from the wall of these installations. Molecular characterization was performed using massively parallel sequencing to obtain a taxonomic and functional gene classification. Also, samples from the drainage system were evaluated because microorganisms may travel over the 12-meter column of the pool water of the Brazilian Nuclear Power Plant (Angra1), which has been functioning since 1985. Regardless of the treatment of the pool water, our data reveal the unexpected presence of Fungi (Basidiomycota and Ascomycota) as the main contaminators of the SFP and FTC. Ustilaginomycetes (Basidiomycota) was the major class contributor (70%) in the SFP and FTC reflecting the little diversity in these sites; nevertheless, Proteobacteria, Actinobacteria, Firmicutes (Bacilli) were present in small proportions. Mapping total reads against six fungal reference genomes indicate that there is, in fact, a high abundance of fungal sequences in samples collected from SFP and FTC. Analysis of the ribosomal internal transcribed spacer (ITS) 1 and 2 regions and the protein found in the mitochondria of eukaryotic cells, cytochrome b (cytb) grouped our sample fungi in the clade 7 as Ustilago and Pseudozyma. In contrast, in the drainage system, Alphaproteobacteria were present in high abundances (55%). The presence of Sphingopyxis, Mesorhizobium, Erythrobacter, Sphingomonas, Novosphingobium, Sphingobium, Chelativorans, Oceanicaulis, Acidovorax, and Cyanobacteria was observed. Based on genomic annotation data, the assessment of the biological function found a higher proportion of protein-coding sequences related to respiration and protein metabolism in SFP and FTC samples. The knowledge of this biological inventory present in the system may contribute to further studies of potential microorganisms that might be useful for bioremediation of nuclear waste.


Asunto(s)
Cianobacterias/genética , Hongos/efectos de la radiación , Proteobacteria/genética , Tolerancia a Radiación/efectos de la radiación , Biopelículas , Brasil , Corrosión , Cianobacterias/efectos de la radiación , Hongos/genética , Plantas de Energía Nuclear , Proteobacteria/efectos de la radiación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/efectos de la radiación , Residuos Radiactivos/efectos adversos , Microbiología del Agua
3.
Gene ; 642: 389-397, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29155257

RESUMEN

Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Microbiología del Suelo , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Análisis por Conglomerados , Hongos/genética , Hongos/aislamiento & purificación , Metagenómica/métodos , Microbiota , Bosque Lluvioso , Rizosfera , Análisis de Secuencia de ADN/métodos
4.
BBA Clin ; 3: 146-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26674563

RESUMEN

Direct-acting antiviral (DAA)-based therapy is the new standard treatment for chronic hepatitis C virus (HCV) infection. However, protease inhibitor (PI)-resistant viral variants have been often described. This study aimed to examine HCV-NS3 protease variants at baseline and at 4 weeks under triple therapy. To this end, we analyzed the presence of variants in HCV-NS3 protease region from peripheral blood samples of 16 patients infected with HCV-1 at baseline and at 4 weeks of combined therapy with telaprevir, pegylated interferon, and ribavirin, using next-generation sequencing. Several variants with synonymous and non-synonymous amino acid substitutions were detected at both time points. Variants detected at low frequency corresponded to 74% (HCV-1a) and 35% (HCV-1b) of non-synonymous substitutions. We found nine PI-resistance-associated variants (V36A, T54S, V55I, Q80K, Q80R, V107I, I132V, D168E, M175L) in HCV-NS3 of 10 patients. There was no correspondence of resistance-associated variant profile between baseline and at 4 weeks. Moreover, these resistance variants at baseline and short-term treatment are not good predictors of outcome under triple therapy. Our study also shows a large number of others minor and major non-synonymous variants in HCV-NS3 early in telaprevir-based therapy that can be important for further drug resistance association studies with newly developed PI agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA