RESUMEN
Artificial intelligence (AI) holds immense promise for accelerating and improving all aspects of drug discovery, not least target discovery and validation. By integrating a diverse range of biological data modalities, AI enables the accurate prediction of drug target properties, ultimately illuminating biological mechanisms of disease and guiding drug discovery strategies. Despite the indisputable potential of AI in drug target discovery, there are many challenges and obstacles yet to be overcome, including dealing with data biases, model interpretability and generalisability, and the validation of predicted drug targets, to name a few. By exploring recent advancements in AI, this review showcases current applications of AI for drug target discovery and offers perspectives on the future of AI for the discovery and validation of drug targets, paving the way for the generation of novel and safer pharmaceuticals.
RESUMEN
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
Asunto(s)
Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Citocromo P-450 CYP11B2 , Uniones Comunicantes , Mutación , Molécula 1 de Adhesión CelularRESUMEN
Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.
Asunto(s)
Hiperaldosteronismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Glándulas Suprarrenales/diagnóstico por imagen , Glándulas Suprarrenales/cirugía , Glándulas Suprarrenales/irrigación sanguínea , Hiperaldosteronismo/diagnóstico por imagen , Hiperaldosteronismo/cirugía , Estudios Prospectivos , Estudios RetrospectivosRESUMEN
Developmental abnormalities of the gonadotropin-releasing hormone (GnRH) neuronal network result in a range of conditions from idiopathic hypogonadotropic hypogonadism to self-limited delayed puberty. We aimed to discover important underlying regulators of self-limited delayed puberty through interrogation of GnRH pathways. Whole exome sequencing (WES) data consisting of 193 individuals, from 100 families with self-limited delayed puberty, was analysed using a virtual panel of genes related to GnRH development and function (n = 12). Five rare predicted deleterious variants in Coiled-Coil Domain Containing 141 (CCDC141) were identified in 21 individuals from 6 families (6% of the tested cohort). Homology modeling predicted all five variants to be deleterious. CCDC141 mutant proteins showed atypical subcellular localization associated with abnormal distribution of acetylated tubulin, and expression of mutants resulted in a significantly delayed cell migration, demonstrated in transfected HEK293 cells. These data identify mutations in CCDC141 as a frequent finding in patients with self-limited delayed puberty. The mis-localization of acetylated tubulin and reduced cell migration seen with mutant CCDC141 suggests a role of the CCDC141-microtubule axis in GnRH neuronal migration, with heterozygous defects potentially impacting the timing of puberty.
RESUMEN
Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Adenoma Corticosuprarrenal/genética , Aldosterona/biosíntesis , Subunidades alfa de la Proteína de Unión al GTP/genética , beta Catenina/genética , Adolescente , Neoplasias de la Corteza Suprarrenal/patología , Adenoma Corticosuprarrenal/patología , Adulto , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Humanos , Hiperaldosteronismo/patología , Masculino , Menopausia/metabolismo , Persona de Mediana Edad , Embarazo , Pubertad/metabolismoRESUMEN
Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining â¼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.
Asunto(s)
Hipertensión , Infarto del Miocardio , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Infarto del Miocardio/tratamiento farmacológico , Polimorfismo de Nucleótido SimpleRESUMEN
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Asunto(s)
Glucemia/genética , Carácter Cuantitativo Heredable , Población Blanca/genética , Alelos , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Herencia Multifactorial/genética , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genéticaRESUMEN
At the dawn of the new decade, it is judicious to reflect on the boom of knowledge about polygenic risk for essential hypertension supplied by the wealth of genome-wide association studies. Hypertension continues to account for significant cardiovascular morbidity and mortality, with increasing prevalence anticipated. Here, we overview recent advances in the use of big data to understand polygenic hypertension, as well as opportunities for future innovation to translate this windfall of knowledge into clinical benefit.
Asunto(s)
Predisposición Genética a la Enfermedad , Genómica , Hipertensión/genética , Estudio de Asociación del Genoma Completo , Humanos , AnamnesisRESUMEN
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Asunto(s)
Presión Sanguínea/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Hipertensión/genética , Factor de Transcripción GATA5/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mutación/genética , Fosfolipasa C beta/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
OBJECTIVE: Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1). DESIGN AND METHODS: Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions. RESULTS: Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts. CONCLUSIONS: Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Pruebas Genéticas/métodos , Hormona de Crecimiento Humana/genética , Factor I del Crecimiento Similar a la Insulina/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Hormona de Crecimiento Humana/sangre , Humanos , Lactante , Factor I del Crecimiento Similar a la Insulina/metabolismo , MasculinoRESUMEN
Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA-binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single-stranded pyrimidine-rich bulges or loops surrounded by double-stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one-to-one protein-nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble.
Asunto(s)
Esclerosis Amiotrófica Lateral , ARN , Proteínas de Unión al ADN , Humanos , Neuronas , Agregado de Proteínas , ARN/genéticaRESUMEN
The initiation of puberty is driven by an upsurge in hypothalamic gonadotropin-releasing hormone (GnRH) secretion. In turn, GnRH secretion upsurge depends on the development of a complex GnRH neuroendocrine network during embryonic life. Although delayed puberty (DP) affects up to 2% of the population, is highly heritable, and is associated with adverse health outcomes, the genes underlying DP remain largely unknown. We aimed to discover regulators by whole-exome sequencing of 160 individuals of 67 multigenerational families in our large, accurately phenotyped DP cohort. LGR4 was the only gene remaining after analysis that was significantly enriched for potentially pathogenic, rare variants in 6 probands. Expression analysis identified specific Lgr4 expression at the site of GnRH neuron development. LGR4 mutant proteins showed impaired Wnt/ß-catenin signaling, owing to defective protein expression, trafficking, and degradation. Mice deficient in Lgr4 had significantly delayed onset of puberty and fewer GnRH neurons compared with WT, whereas lgr4 knockdown in zebrafish embryos prevented formation and migration of GnRH neurons. Further, genetic lineage tracing showed strong Lgr4-mediated Wnt/ß-catenin signaling pathway activation during GnRH neuron development. In conclusion, our results show that LGR4 deficiency impairs Wnt/ß-catenin signaling with observed defects in GnRH neuron development, resulting in a DP phenotype.
Asunto(s)
Neuronas , Pubertad Tardía , Receptores Acoplados a Proteínas G/deficiencia , Vía de Señalización Wnt , Animales , Femenino , Estudios de Seguimiento , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Masculino , Ratones , Neuronas/metabolismo , Neuronas/patología , Pubertad Tardía/genética , Pubertad Tardía/metabolismo , Pubertad Tardía/patología , Receptores Acoplados a Proteínas G/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.
RESUMEN
BACKGROUND: The genetic basis of left ventricular (LV) image-derived phenotypes, which play a vital role in the diagnosis, management, and risk stratification of cardiovascular diseases, is unclear at present. METHODS: The LV parameters were measured from the cardiovascular magnetic resonance studies of the UK Biobank. Genotyping was done using Affymetrix arrays, augmented by imputation. We performed genome-wide association studies of 6 LV traits-LV end-diastolic volume, LV end-systolic volume, LV stroke volume, LV ejection fraction, LV mass, and LV mass to end-diastolic volume ratio. The replication analysis was performed in the MESA study (Multi-Ethnic Study of Atherosclerosis). We identified the candidate genes at genome-wide significant loci based on the evidence from extensive bioinformatic analyses. Polygenic risk scores were constructed from the summary statistics of LV genome-wide association studies to predict the heart failure events. RESULTS: The study comprised 16 923 European UK Biobank participants (mean age 62.5 years; 45.8% men) without prevalent myocardial infarction or heart failure. We discovered 14 genome-wide significant loci (3 loci each for LV end-diastolic volume, LV end-systolic volume, and LV mass to end-diastolic volume ratio; 4 loci for LV ejection fraction, and 1 locus for LV mass) at a stringent P<1×10-8. Three loci were replicated at Bonferroni significance and 7 loci at nominal significance (P<0.05 with concordant direction of effect) in the MESA study (n=4383). Follow-up bioinformatic analyses identified 28 candidate genes that were enriched in the cardiac developmental pathways and regulation of the LV contractile mechanism. Eight genes (TTN, BAG3, GRK5, HSPB7, MTSS1, ALPK3, NMB, and MMP11) supported by at least 2 independent lines of in silico evidence were implicated in the cardiac morphogenesis and heart failure development. The polygenic risk scores of LV phenotypes were predictive of heart failure in a holdout UK Biobank sample of 3106 cases and 224 134 controls (odds ratio 1.41, 95% CI 1.26 - 1.58, for the top quintile versus the bottom quintile of the LV end-systolic volume risk score). CONCLUSIONS: We report 14 genetic loci and indicate several candidate genes that not only enhance our understanding of the genetic architecture of prognostically important LV phenotypes but also shed light on potential novel therapeutic targets for LV remodeling.
Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/diagnóstico por imagen , Corazón/crecimiento & desarrollo , Morfogénesis/genética , Anciano , Femenino , Sitios Genéticos , Genotipo , Insuficiencia Cardíaca/genética , Humanos , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Fenotipo , Función Ventricular Izquierda , Remodelación VentricularRESUMEN
High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.
Asunto(s)
Presión Sanguínea/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hipertensión/genética , Animales , Ontología de Genes , Sitios Genéticos , Pleiotropía Genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de Riesgo , Programas InformáticosRESUMEN
Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.
Asunto(s)
Apéndice Atrial/fisiopatología , Fibrilación Atrial/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/patología , Vesículas Cubiertas por Clatrina/metabolismo , Estudios de Cohortes , Colágeno/metabolismo , Puente de Arteria Coronaria , Regulación hacia Abajo/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genéticaRESUMEN
In coffee-producing countries, waste products from coffee production are useful substrates for cultivation of Pleurotus ostreatus. This species is relatively easy to grow, coffee waste substrates are readily available and the mushroom fruiting bodies are a valuable source of nutrition and income. In developed countries, cultivation of P. ostreatus on spent coffee grounds (SCG) from coffee consumption is a novel way to recycle this urban waste product. Here, we studied the effect of SCG and caffeine on growth of a commercial strain of P. ostreatus in liquid and solid cultures, and on a commercial scale. The presence of caffeine inhibited mycelial growth on agar and in liquid culture in the laboratory. Increased levels of SCG in an SCG/sawdust substrate also delayed mycelial growth and delayed or prevented fruiting during commercial cultivation. Despite growth inhibition, partial degradation of caffeine to xanthine by P. ostreatus mycelium was observed in all SCG-containing substrate mixtures. Degradation of caffeine proceeded mainly via sequential N-demethylation to theophylline (1,3-dimethylxanthine) and 3-methylxanthine, although both paraxanthine and theobromine also accumulated in the substrate. Caffeine and its demethylated metabolites were also detected in fruiting bodies, but it was not clear whether caffeine metabolism occurred in the fruiting bodies themselves or whether caffeine metabolites were translocated there from the mycelium. Based on the caffeine concentrations measured in fruiting bodies after growth with SCG, it would be necessary to consume ~ 250 kg of fresh oyster mushrooms to obtain the amount of caffeine equivalent to one cup of espresso coffee, suggesting that the health impact of caffeine in these mushrooms is low. However, the ability of P. ostreatus to degrade caffeine indicates that this and other species in this genus may have potential applications in detoxification of coffee production wastes.
Asunto(s)
Cafeína/metabolismo , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Residuos/análisis , Café/química , Medios de Cultivo/química , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Microbiología Industrial , Residuos Industriales/análisis , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Xantina/metabolismoRESUMEN
The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.
Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Pubertad Tardía/genética , Securina/genética , Adolescente , Adulto , Animales , Niño , Femenino , Regulación de la Expresión Génica/genética , Hormona Liberadora de Gonadotropina/genética , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Pubertad/genética , Pubertad/fisiología , ARN Mensajero/genética , Securina/fisiología , Maduración Sexual/genética , Transactivadores/genética , Factores de Transcripción/genética , Secuenciación del Exoma , Adulto JovenRESUMEN
In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.