Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 244: 106595, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111705

RESUMEN

Transgender is a term for people whose gender identity or expression differs from their natal sex. These individuals often seek cross-hormonal therapy to simulate the individual´s desired gender. However, the use of estrogens and testosterone has side effects such as a higher propensity to cancer, weight changes and cardiovascular diseases. Testosterone has also been linked with hypertension. Still, little is known about the outcomes and prevalence of metabolic perturbations in the trans community. Here we aim to analyze if cross-administering sexual hormones affects heart mitochondrial function. Mitochondria produces the ATP needed for heart function. In fact, different studies show that mitochondrial dysfunction precedes cardiac damage. In this work we used either female rats castrated and injected with testosterone or male rats castrated and injected with estrogens for 4 months. We performed an electrocardiogram, and then we isolated heart mitochondria to measure the rate of oxygen consumption, calcium fluxes, membrane potential, superoxide dismutase activity, lipoperoxidation and cytokines. We detected wide modifications in all parameters associated to cross-hormonal administration.

2.
PNAS Nexus ; 3(6): pgae210, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881840

RESUMEN

Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.

3.
Biochim Biophys Acta Bioenerg ; 1865(2): 149035, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360260

RESUMEN

Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.


Asunto(s)
Extremófilos , Rhodotorula , Transporte de Electrón , Rhodotorula/química , Rhodotorula/metabolismo , Membranas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA